دورية أكاديمية

Impaired HPA axis function in diabetes involves adrenal apoptosis and phagocytosis.

التفاصيل البيبلوغرافية
العنوان: Impaired HPA axis function in diabetes involves adrenal apoptosis and phagocytosis.
المؤلفون: Repetto EM; Departamento de Bioquímica Clínica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina. erepetto@fmed.uba.ar.; Facultad de Medicina, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Centro de Estudios Farmacológicos y Botánicos (CEFYBO), Laboratorio de Endocrinología Molecular (LEM), Universidad de Buenos Aires, Buenos Aires, Argentina. erepetto@fmed.uba.ar., Wiszniewski M; Facultad de Medicina, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Centro de Estudios Farmacológicos y Botánicos (CEFYBO), Laboratorio de Endocrinología Molecular (LEM), Universidad de Buenos Aires, Buenos Aires, Argentina., Bonelli AL; Facultad de Medicina, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Centro de Estudios Farmacológicos y Botánicos (CEFYBO), Laboratorio de Endocrinología Molecular (LEM), Universidad de Buenos Aires, Buenos Aires, Argentina., Vecino CV; Facultad de Medicina, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Centro de Estudios Farmacológicos y Botánicos (CEFYBO), Laboratorio de Endocrinología Molecular (LEM), Universidad de Buenos Aires, Buenos Aires, Argentina., Martinez Calejman C; Facultad de Medicina, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Centro de Estudios Farmacológicos y Botánicos (CEFYBO), Laboratorio de Endocrinología Molecular (LEM), Universidad de Buenos Aires, Buenos Aires, Argentina., Arias P; Departamento de Fisiología, Facultad de Medicina, Universidad Nacional de Rosario, Rosario, Argentina., Cymeryng CB; Facultad de Medicina, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Centro de Estudios Farmacológicos y Botánicos (CEFYBO), Laboratorio de Endocrinología Molecular (LEM), Universidad de Buenos Aires, Buenos Aires, Argentina.; Departamento de Bioquímica Humana, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina.
المصدر: Endocrine [Endocrine] 2019 Mar; Vol. 63 (3), pp. 602-614. Date of Electronic Publication: 2018 Sep 21.
نوع المنشور: Journal Article; Research Support, Non-U.S. Gov't
اللغة: English
بيانات الدورية: Publisher: Humana Press Country of Publication: United States NLM ID: 9434444 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1559-0100 (Electronic) Linking ISSN: 1355008X NLM ISO Abbreviation: Endocrine Subsets: MEDLINE
أسماء مطبوعة: Publication: Feb. 1996- : Totowa, NJ : Humana Press
Original Publication: Houndsmills, Basingstoke, Hants, UK : Macmillan Press, c1994-
مواضيع طبية MeSH: Oxidative Stress*, Adrenal Cortex/*metabolism , Diabetes Mellitus, Experimental/*metabolism, Animals ; Apoptosis ; Corticosterone/blood ; Hypothalamo-Hypophyseal System/metabolism ; Macrophage Activation ; Male ; Pituitary-Adrenal System/metabolism ; Rats, Wistar
مستخلص: Purpose: The aim of the present study was to analyze the involvement of oxidative stress and inflammation in the modulation of glucocorticoid production in the adrenal cortex of diabetic rats.
Methods: Male Wistar rats were treated with or without streptozotocin (STZ, an insulinopenic model of diabetes) and either α-lipoic (90 mg/kg ip.), α-tocopherol (200 mg/kg po.) or with STZ and supplemented with insulin (STZ + INS: 2.5U/day) for 4 weeks. Oxidative/nitrosative stress parameters and antioxidant enzymes were determined in adrenocortical tissues. Apoptosis and macrophage activation were evaluated by immunohistochemistry (TUNEL and ED1 + ). Basal and ACTH-stimulated corticosterone production were assessed by RIA and plasma ACTH levels were determined by an immunometric assay.
Results: Diabetic rats showed a diminished response to exogenous ACTH stimulation along with higher basal corticosterone and lower plasma ACTH levels. In the adrenal cortex we determined an increase in the levels of lipoperoxides, S-nitrosothiols, nitric oxide synthase activity and nitro-tyrosine modified proteins while catalase activity and heme oxygenase-1 expression levels were also elevated. Antioxidant treatments were effective in the prevention of these effects, and in the increase in the number of apoptotic and phagocytic (ED1 + ) cells detected in diabetic rats. No changes were observed in the STZ + INS group.
Conclusions: Generation of oxidative/nitrosative stress in the adrenal cortex of diabetic rats leads to the induction of apoptosis and the activation of adrenocortical macrophages and is associated with an elevated basal corticosteronemia and the loss of the functional capacity of the gland.
References: J.L. Rains, S.K. Jain, Oxidative stress, insulin signaling, and diabetes. Free Radic. Biol. Med. 50(5), 567–575 (2011). (PMID: 2116334610.1016/j.freeradbiomed.2010.12.006)
D.A. Greene, M.J. Stevens, I. Obrosova, E.L. Feldman, Glucose-induced oxidative stress and programmed cell death in diabetic neuropathy. Eur. J. Pharmacol. 375(1-3), 217–223 (1999). (PMID: 1044357810.1016/S0014-2999(99)00356-8)
P. Pacher, I.G. Obrosova, J.G. Mabley, C. Szabo, Role of nitrosative stress and peroxynitrite in the pathogenesis of diabetic complications. Emerging new therapeutical strategies. Curr. Med. Chem. 12(3), 267–275 (2005). (PMID: 15723618222548310.2174/0929867053363207)
T. Nishikawa, D. Edelstein, M. Brownlee, The missing link: a single unifying mechanism for diabetic complications. Kidney Int. Suppl. 77, S26–30 (2000). (PMID: 1099768710.1046/j.1523-1755.2000.07705.x)
F. Giacco, M. Brownlee, Oxidative stress and diabetic complications. Circ. Res. 107(9), 1058–1070 (2010). (PMID: 21030723299692210.1161/CIRCRESAHA.110.223545)
E. Di Marco, J.C. Jha, A. Sharma, J.L. Wilkinson-Berka, K.A. Jandeleit-Dahm, J.B. de Haan, Are reactive oxygen species still the basis for diabetic complications? Clin. Sci. 129(2), 199–216 (2015). (PMID: 2592768010.1042/CS20150093)
R. Brito, G. Castillo, J. Gonzalez, N. Valls, R. Rodrigo, Oxidative stress in hypertension: mechanisms and therapeutic opportunities. Exp. Clin. Endocrinol. Diabetes 123(6), 325–335 (2015). (PMID: 2591888110.1055/s-0035-1548765)
C. Karasu, Glycoxidative stress and cardiovascular complications in experimentally-induced diabetes: effects of antioxidant treatment. Open Cardiovasc. Med. J. 4, 240–256 (2010). (PMID: 21270942302634010.2174/1874192401004010240)
L. Rochette, S. Ghibu, A. Muresan, C. Vergely, Alpha-lipoic acid: molecular mechanisms and therapeutic potential in diabetes. Can. J. Physiol. Pharmacol. 93(12), 1021–1027 (2015). (PMID: 2640638910.1139/cjpp-2014-0353)
H. Goldenstein, N.S. Levy, Y.T. Lipener, A.P. Levy, Patient selection and vitamin E treatment in diabetes mellitus. Expert. Rev. Cardiovasc. Ther. 11(3), 319–326 (2013). (PMID: 23469912361518910.1586/erc.12.187)
K. Petersen Shay, R.F. Moreau, E.J. Smith, T.M. Hagen, Is alpha-lipoic acid a scavenger of reactive oxygen species in vivo? Evidence for its initiation of stress signaling pathways that promote endogenous antioxidant capacity. IUBMB Life 60(6), 362–367 (2008). (PMID: 1840917210.1002/iub.40)
H. Moini, L. Packer, N.E. Saris, Antioxidant and prooxidant activities of alpha-lipoic acid and dihydrolipoic acid. Toxicol. Appl. Pharmacol. 182(1), 84–90 (2002). (PMID: 1212726610.1006/taap.2002.9437)
M. Whiteman, H. Tritschler, B. Halliwell, Protection against peroxynitrite-dependent tyrosine nitration and alpha 1-antiproteinase inactivation by oxidized and reduced lipoic acid. FEBS Lett. 379(1), 74–76 (1996). (PMID: 856623410.1016/0014-5793(95)01489-6)
L. Packer, E.H. Witt, H.J. Tritschler, alpha-Lipoic acid as a biological antioxidant. Free Radic. Biol. Med. 19(2), 227–250 (1995). (PMID: 764949410.1016/0891-5849(95)00017-R)
V.E. Kagan, A. Shvedova, E. Serbinova, S. Khan, C. Swanson, R. Powell, L. Packer, Dihydrolipoic acid—a universal antioxidant both in the membrane and in the aqueous phase. Reduction of peroxyl, ascorbyl and chromanoxyl radicals. Biochem. Pharmacol. 44(8), 1637–1649 (1992). (PMID: 141798510.1016/0006-2952(92)90482-X)
S. Golbidi, M. Badran, I. Laher, Diabetes and alpha lipoic acid. Front. Pharmacol. 2, 69 (2011). (PMID: 22125537322130010.3389/fphar.2011.00069)
T. Tankova, D. Koev, L. Dakovska, Alpha-lipoic acid in the treatment of autonomic diabetic neuropathy (controlled, randomized, open-label study). Rom. J. Intern. Med. 42(2), 457–464 (2004). (PMID: 15529636)
T. Varkonyi, A. Korei, Z. Putz, T. Martos, K. Keresztes, C. Lengyel, S. Nyiraty, A. Stirban, G. Jermendy, P. Kempler, Advances in the management of diabetic neuropathy. Minerva Med. 108(5), 419–437 (2017). (PMID: 28541026)
D. Ziegler, A. Ametov, A. Barinov, P.J. Dyck, I. Gurieva, P.A. Low, U. Munzel, N. Yakhno, I. Raz, M. Novosadova, J. Maus, R. Samigullin, Oral treatment with alpha-lipoic acid improves symptomatic diabetic polyneuropathy: the SYDNEY 2 trial. Diabetes Care 29(11), 2365–2370 (2006). (PMID: 1706566910.2337/dc06-1216)
J.W. Chang, E.K. Lee, T.H. Kim, W.K. Min, S. Chun, K.U. Lee, S.B. Kim, J.S. Park, Effects of alpha-lipoic acid on the plasma levels of asymmetric dimethylarginine in diabetic end-stage renal disease patients on hemodialysis: a pilot study. Am. J. Nephrol. 27(1), 70–74 (2007). (PMID: 1725969610.1159/000099035)
M. Morcos, V. Borcea, B. Isermann, S. Gehrke, T. Ehret, M. Henkels, S. Schiekofer, M. Hofmann, J. Amiral, H. Tritschler, R. Ziegler, P. Wahl, P.P. Nawroth, Effect of alpha-lipoic acid on the progression of endothelial cell damage and albuminuria in patients with diabetes mellitus: an exploratory study. Diabetes Res. Clin. Pract. 52(3), 175–183 (2001). (PMID: 1132308710.1016/S0168-8227(01)00223-6)
S.K. Hegazy, O.A. Tolba, T.M. Mostafa, M.A. Eid, D.R. El-Afify, Alpha-lipoic acid improves subclinical left ventricular dysfunction in asymptomatic patients with type 1 diabetes. Rev. Diabet. Stud. 10(1), 58–67 (2013). (PMID: 24172699393207210.1900/RDS.2013.10.58)
G.W. Burton, K.U. Ingold, Vitamin E as an in vitro and in vivo antioxidant. Ann. N. Y. Acad. Sci. 570, 7–22 (1989). (PMID: 269811110.1111/j.1749-6632.1989.tb14904.x)
P.G. Khatami, A. Soleimani, N. Sharifi, E. Aghadavod, Z. Asemi, The effects of high-dose vitamin E supplementation on biomarkers of kidney injury, inflammation, and oxidative stress in patients with diabetic nephropathy: a randomized, double-blind, placebo-controlled trial. J. Clin. Lipidol. 10(4), 922–929 (2016). (PMID: 2757812410.1016/j.jacl.2016.02.021)
S. Gupta, T.K. Sharma, G.G. Kaushik, V.P. Shekhawat, Vitamin E supplementation may ameliorate oxidative stress in type 1 diabetes mellitus patients. Clin. Lab. 57(5-6), 379–386 (2011). (PMID: 21755829)
C. Giannini, F. Lombardo, F. Curro, M. Pomilio, T. Bucciarelli, F. Chiarelli, A. Mohn, Effects of high-dose vitamin E supplementation on oxidative stress and microalbuminuria in young adult patients with childhood onset type 1 diabetes mellitus. Diabetes Metab. Res. Rev. 23(7), 539–546 (2007). (PMID: 1726617310.1002/dmrr.717)
E.M. Repetto, R. Sanchez, J. Cipelli, F. Astort, C.M. Calejman, G.G. Piroli, P. Arias, C.B. Cymeryng, Dysregulation of corticosterone secretion in streptozotocin-diabetic rats: modulatory role of the adrenocortical nitrergic system. Endocrinology 151(1), 203–210 (2010). (PMID: 1994004010.1210/en.2009-0592)
D.D. Wink, S. Kim, E. Coffin, J. Cook, Y. Vodovotz, D. Chistodoulou, D. Jourd’heuil, M. Grisham, Detection of S-nitrosothiols by fluorometric and colorimetric methods. Methods Enzymol. 301, 201–211 (1999). https://doi.org/10.1016/S0076-6879(99)01083-6. (PMID: 991956810.1016/S0076-6879(99)01083-6)
Y. Pomeraniec, N. Grion, L. Gadda, V. Pannunzio, E.J. Podesta, C.B. Cymeryng, Adrenocorticotropin induces heme oxygenase-1 expression in adrenal cells. J. Endocrinol. 180(1), 113–124 (2004). (PMID: 1470915010.1677/joe.0.1800113)
H. Aebi. Catalase. Methods of Enzymatic Analysis. H. Bermeyer (ed.) Verlag Chemie, Wenheim), 1982) 271–282.
M.E. Mercau, F. Astort, E.F. Giordanino, C. Martinez Calejman, R. Sanchez, L. Caldareri, E.M. Repetto, O.A. Coso, C.B. Cymeryng, Involvement of PI3K/Akt and p38 MAPK in the induction of COX-2 expression by bacterial lipopolysaccharide in murine adrenocortical cells. Mol. Cell. Endocrinol. 384(1-2), 43–51 (2013). (PMID: 10.1016/j.mce.2014.01.007)
S.A. Motzer, V. Hertig, Stress, stress response, and health. Nurs. Clin. N. Am. 39(1), 1–17 (2004). (PMID: 10.1016/j.cnur.2003.11.001)
T.H. Puar, N.M. Stikkelbroeck, L.C. Smans, P.M. Zelissen, A.R. Hermus, Adrenal crisis: still a deadly event in the 21st century. Am. J. Med. 129(3), 339 e331–339 (2016). (PMID: 10.1016/j.amjmed.2015.08.021)
P.K. Singh, D. Baxi, S. Banerjee, A.V. Ramachandran, Therapy with methanolic extract of Pterocarpus marsupium Roxb and Ocimum sanctum Linn reverses dyslipidemia and oxidative stress in alloxan induced type I diabetic rat model. Exp. Toxicol. Pathol. 64(5), 441–448 (2010). (PMID: 2110635610.1016/j.etp.2010.10.011)
I.G. Danilova, T.S. Bulavintceva, I.F. Gette, S.Y. Medvedeva, V.V. Emelyanov, M.T. Abidov, Partial recovery from alloxan-induced diabetes by sodium phthalhydrazide in rats. Biomed. Pharmacother. 95, 103–110 (2017). (PMID: 2883787610.1016/j.biopha.2017.07.117)
O. Chan, K. Inouye, M. Vranic, S.G. Matthews, Hyperactivation of the hypothalamo-pituitary-adrenocortical axis in streptozotocin-diabetes is associated with reduced stress responsiveness and decreased pituitary and adrenal sensitivity. Endocrinology 143(5), 1761–1768 (2002). (PMID: 1195615810.1210/endo.143.5.8809)
K. Simunkova, R. Hampl, M. Hill, L. Kriz, P. Hrda, D. Janickova-Zdarska, V. Zamrazil, J. Vrbikova, K. Vondra, Adrenocortical function in young adults with diabetes mellitus type 1. J. Steroid Biochem. Mol. Biol. 122(1-3), 35–41 (2010). (PMID: 2043392410.1016/j.jsbmb.2010.04.017)
X. Gaete, G. Iniguez, J. Linares, A. Avila, V. Mericq, Cortisol hyporesponsiveness to the low dose ACTH test is a frequent finding in a pediatric population with type 1 diabetes mellitus. Pediatr. Diabetes 14(6), 429–434 (2010). (PMID: 10.1111/pedi.12021)
A.N. Sharma, J. Wigham, J.D. Veldhuis, Corticotropic axis drive of overnight cortisol secretion is suppressed in adolescents and young adults with type 1 diabetes mellitus. Pediatr. Diabetes 15(6), 444–452 (2014). (PMID: 2435082010.1111/pedi.12108)
S. Azhar, L. Cao, E. Reaven, Alteration of the adrenal antioxidant defense system during aging in rats. J. Clin. Invest. 96(3), 1414–1424 (1995). (PMID: 765781418576410.1172/JCI118177)
P. Patak, H.S. Willenberg, S.R. Bornstein, Vitamin C is an important cofactor for both adrenal cortex and adrenal medulla. Endocr. Res. 30(4), 871–875 (2004). (PMID: 1566683910.1081/ERC-200044126)
J. Zhen, H. Lu, X.Q. Wang, N.D. Vaziri, X.J. Zhou, Upregulation of endothelial and inducible nitric oxide synthase expression by reactive oxygen species. Am. J. Hypertens. 21(1), 28–34 (2008). (PMID: 1809174110.1038/ajh.2007.14)
J.H. Jang, J.N. Chun, S. Godo, G. Wu, H. Shimokawa, C.Z. Jin, J.H. Jeon, S.J. Kim, Z.H. Jin, Y.H. Zhang, ROS and endothelial nitric oxide synthase (eNOS)-dependent trafficking of angiotensin II type 2 receptor begets neuronal NOS in cardiac myocytes. Basic Res. Cardiol. 110(3), 21 (2015). (PMID: 25804308482715610.1007/s00395-015-0477-6)
N.D. Vaziri, Y. Ding, Z. Ni, Compensatory up-regulation of nitric-oxide synthase isoforms in lead-induced hypertension; reversal by a superoxide dismutase-mimetic drug. J. Pharmacol. Exp. Ther. 298(2), 679–685 (2001). (PMID: 11454931)
G.M. Buga, J.M. Griscavage, N.E. Rogers, L.J. Ignarro, Negative feedback regulation of endothelial cell function by nitric oxide. Circ. Res. 73(5), 808–812 (1993). (PMID: 769142910.1161/01.RES.73.5.808)
Y. Du, C.M. Miller, T.S. Kern, Hyperglycemia increases mitochondrial superoxide in retina and retinal cells. Free Radic. Biol. Med. 35(11), 1491–1499 (2003). (PMID: 1464239710.1016/j.freeradbiomed.2003.08.018)
R.A. Kowluru, R.L. Engerman, T.S. Kern, Diabetes-induced metabolic abnormalities in myocardium: effect of antioxidant therapy. Free Radic. Res. 32(1), 67–74 (2000). (PMID: 1062521810.1080/10715760000300071)
D. Koya, K. Hayashi, M. Kitada, A. Kashiwagi, R. Kikkawa, M. Haneda, Effects of antioxidants in diabetes-induced oxidative stress in the glomeruli of diabetic rats. J. Am. Soc. Nephrol. 14(8Suppl 3), S250–253 (2003). (PMID: 1287444110.1097/01.ASN.0000077412.07578.44)
V.M. Altan, The pharmacology of diabetic complications. Curr. Med. Chem. 10(15), 1317–1327 (2003). (PMID: 1287113210.2174/0929867033457287)
M.A. Haidara, D.P. Mikhailidis, M.A. Rateb, Z.A. Ahmed, H.Z. Yassin, I.M. Ibrahim, L.A. Rashed, Evaluation of the effect of oxidative stress and vitamin E supplementation on renal function in rats with streptozotocin-induced Type 1 diabetes. J. Diabetes Complicat. 23(2), 130–136 (2009). (PMID: 1843645810.1016/j.jdiacomp.2008.02.011)
S. Alireza, N. Leila, S. Siamak, K.A. Mohammad-Hasan, I. Behrouz, Effects of vitamin E on pathological changes induced by diabetes in rat lungs. Respir. Physiol. Neurobiol. 185(3), 593–599 (2013). (PMID: 2324738510.1016/j.resp.2012.11.017)
M.B. Gomes, C.A. Negrato, Alpha-lipoic acid as a pleiotropic compound with potential therapeutic use in diabetes and other chronic diseases. Diabetol. Metab. Syndr. 6(1), 80 (2014). (PMID: 25104975412414210.1186/1758-5996-6-80)
G. Nascimento Gomes, F.T. Barbosa, R.F. Radaeli, M.F. Cavanal, M. Mello Aires, F. Zaladek Gil, Effect of D-alpha-tocopherol on tubular nephron acidification by rats with induced diabetes mellitus. Braz. J. Med. Biol. Res. 38(7), 1043–1051 (2005). (PMID: 1600727510.1590/S0100-879X2005000700007)
D. Comin, L. Gazarini, J.N. Zanoni, H. Milani, R.M. de Oliveira, Vitamin E improves learning performance and changes the expression of nitric oxide-producing neurons in the brains of diabetic rats. Behav. Brain. Res. 210(1), 38–45 (2010). (PMID: 2013892010.1016/j.bbr.2010.02.001)
I. Obrosova, X. Cao, D.A. Greene, M.J. Stevens, Diabetes-induced changes in lens antioxidant status, glucose utilization and energy metabolism: effect of DL-alpha-lipoic acid. Diabetologia 41(12), 1442–1450 (1998). (PMID: 986721110.1007/s001250051090)
A.C. Maritim, R.A. Sanders, J.B. Watkins, 3rd: effects of alpha-lipoic acid on biomarkers of oxidative stress in streptozotocin-induced diabetic rats. J. Nutr. Biochem. 14(5), 288–294 (2003). (PMID: 1283203310.1016/S0955-2863(03)00036-6)
C. Hurdag, I. Uyaner, E. Gurel, A. Utkusavas, P. Atukeren, C. Demirci, The effect of alpha-lipoic acid on NOS dispersion in the lung of streptozotocin-induced diabetic rats. J. Diabetes Complicat. 22(1), 56–61 (2008). (PMID: 1819107810.1016/j.jdiacomp.2006.08.004)
S. Xu, C. Chen, W.X. Wang, S.R. Huang, J. Yu, X.Y. Chen, IIA phospholipase A2 in pancreatitis-associated adrenal injury in acute necrotizing pancreatitis. Pathol. Res. Pract. 206(2), 73–82 (2010). (PMID: 1936243110.1016/j.prp.2009.03.002)
J. Yu, S. Xu, W.X. Wang, W.H. Deng, H. Jin, X.Y. Chen, C. Chen, H.T. Sun, Changes of inflammation and apoptosis in adrenal gland after experimental injury in rats with acute necrotizing pancreatitis. Inflammation 35(1), 11–22 (2012). (PMID: 2116135210.1007/s10753-010-9284-2)
J. Yu, T. Zuo, W. Deng, Q. Shi, P. Ma, C. Chen, L. Zhao, K. Zhao, W. Wang, Poly(ADP-ribose) polymerase inhibition suppresses inflammation and promotes recovery from adrenal injury in a rat model of acute necrotizing pancreatitis. Bmc. Gastroenterol. 16(1), 81 (2016). (PMID: 27465581496430910.1186/s12876-016-0493-5)
A. Kupsco, D. Schlenk, Oxidative stress, unfolded protein response, and apoptosis in developmental toxicity. Int. Rev. Cell. Mol. Biol. 317, 1–66 (2011).
C.J. Norbury, I.D. Hickson, Cellular responses to DNA damage. Annu. Rev. Pharmacol. Toxicol. 41, 367–401 (2001). (PMID: 1126446210.1146/annurev.pharmtox.41.1.367)
R. Saraswathi, S.N. Devaraj, Oxidative stress in skeletal muscle impairs mitochondrial function in alloxan induced diabetic rats: role of alpha lipoic acid. Biomed. Prev. Nutr. 3(3), 213–219 (2013). https://doi.org/10.1016/j.bionut.2012.08.006. (PMID: 10.1016/j.bionut.2012.08.006)
Y. Yang, W. Wang, Y. Liu, T. Guo, P. Chen, K. Ma, C. Zhou, Alpha-lipoic acid inhibits high glucose-induced apoptosis in HIT-T15 cells. Dev. Growth Differ. 54(5), 557–565 (2012). (PMID: 2262068310.1111/j.1440-169X.2012.01356.x)
J. Shin, S.J. Yang, Y. Lim, Gamma-tocopherol supplementation ameliorated hyper-inflammatory response during the early cutaneous wound healing in alloxan-induced diabetic mice. Exp. Biol. Med. 242(5), 505–515 (2017). (PMID: 10.1177/1535370216683836)
H. Almeida, J. Ferreira, D. Neves, Macrophages of the adrenal cortex: a morphological study of the effects of aging and dexamethasone administration. Ann. N. Y. Acad. Sci. 1019, 135–140 (2004). (PMID: 1524700610.1196/annals.1297.024)
S. McIlmoil, J. Strickland, A.M. Judd, Interleukin 6 increases the in vitro expression of key proteins associated with steroidogenesis in the bovine adrenal zona fasciculata. Domest. Anim. Endocrinol. 55, 11–24 (2016). (PMID: 2670009410.1016/j.domaniend.2015.10.003)
A.V. Turnbull, C.L. Rivier, Regulation of the hypothalamic-pituitary-adrenal axis by cytokines: actions and mechanisms of action. Physiol. Rev. 79(1), 1–71 (1999). (PMID: 992236710.1152/physrev.1999.79.1.1)
S.R. Bornstein, H. Rutkowski, I. Vrezas, Cytokines and steroidogenesis. Mol. Cell. Endocrinol. 215(1-2), 135–141 (2004). (PMID: 1502618610.1016/j.mce.2003.11.022)
I.V. Tkachenko, T. Jaaskelainen, J. Jaaskelainen, J.J. Palvimo, R. Voutilainen, Interleukins 1alpha and 1beta as regulators of steroidogenesis in human NCI-H295R adrenocortical cells. Steroids 76(10-11), 1103–1115 (2011). (PMID: 2160023010.1016/j.steroids.2011.04.018)
A. Hasanvand, H. Amini-Khoei, M.R. Hadian, A. Abdollahi, S.M. Tavangar, A.R. Dehpour, E. Semiei, S.E. Mehr, Anti-inflammatory effect of AMPK signaling pathway in rat model of diabetic neuropathy. Inflammopharmacology 24(5), 207–219 (2016). (PMID: 2750652810.1007/s10787-016-0275-2)
J.F. Navarro-Gonzalez, C. Mora-Fernandez, The role of inflammatory cytokines in diabetic nephropathy. J. Am. Soc. Nephrol. 19(3), 433–442 (2008). (PMID: 1825635310.1681/ASN.2007091048)
R.A. Kowluru, Q. Zhong, J.M. Santos, M. Thandampallayam, D. Putt, D.L. Gierhart, Beneficial effects of the nutritional supplements on the development of diabetic retinopathy. Nutr. Metab. 11(1), 8 (2014). (PMID: 10.1186/1743-7075-11-8)
T. Ono, S. Takada, S. Kinugawa, H. Tsutsui, Curcumin ameliorates skeletal muscle atrophy in type 1 diabetic mice by inhibiting protein ubiquitination. Exp. Physiol. 100(9), 1052–1063 (2015). (PMID: 2599819610.1113/EP085049)
M.B. Ka, A. Daumas, J. Textoris, J.L. Mege, Phenotypic diversity and emerging new tools to study macrophage activation in bacterial infectious diseases. Front. Immunol. 5, 500 (2014). (PMID: 25346736419333110.3389/fimmu.2014.00500)
A. Nilsson, L. Vesterlund, P.A. Oldenborg, Macrophage expression of LRP1, a receptor for apoptotic cells and unopsonized erythrocytes, can be regulated by glucocorticoids. Biochem. Biophys. Res. Commun. 417(4), 1304–1309 (2012). (PMID: 2223430910.1016/j.bbrc.2011.12.137)
J.S. Gilmour, A.E. Coutinho, J.F. Cailhier, T.Y. Man, M. Clay, G. Thomas, H.J. Harris, J.J. Mullins, J.R. Seckl, J.S. Savill, K.E. Chapman, Local amplification of glucocorticoids by 11 beta-hydroxysteroid dehydrogenase type 1 promotes macrophage phagocytosis of apoptotic leukocytes. J. Immunol. 176(12), 7605–7611 (2006). (PMID: 1675140710.4049/jimmunol.176.12.7605)
M.E. Reyland, R.M. Evans, E.K. White, Lipoproteins regulate expression of the steroidogenic acute regulatory protein (StAR) in mouse adrenocortical cells. J. Biol. Chem. 275(47), 36637–36644 (2000). (PMID: 1096048210.1074/jbc.M006456200)
G.S. Prasath, S.P. Subramanian, Antihyperlipidemic effect of fisetin, a bioflavonoid of strawberries, studied in streptozotocin-induced diabetic rats. J. Biochem. Mol. Toxicol. 28(10), 442–449 (2014). (PMID: 2493960610.1002/jbt.21583)
معلومات مُعتمدة: PICT 2008 N°1034 International Agencia Nacional de Promoción Científica y Tecnológica; UBACYT 2014-2017 20020130100115BA International Universidad de Buenos Aires; UBACYT 2016-2018 20020150200065BA International Universidad de Buenos Aires; PIP11220120100257 International Consejo Nacional de Investigaciones Científicas y Técnicas
فهرسة مساهمة: Keywords: Apoptosis; Diabetes; HPA dysfuntion; Oxidative stress; α-lipoic acid; α-tocopherol
المشرفين على المادة: W980KJ009P (Corticosterone)
تواريخ الأحداث: Date Created: 20180923 Date Completed: 20200427 Latest Revision: 20210213
رمز التحديث: 20240628
DOI: 10.1007/s12020-018-1755-5
PMID: 30242601
قاعدة البيانات: MEDLINE
الوصف
تدمد:1559-0100
DOI:10.1007/s12020-018-1755-5