دورية أكاديمية

A gut microbial factor modulates locomotor behaviour in Drosophila.

التفاصيل البيبلوغرافية
العنوان: A gut microbial factor modulates locomotor behaviour in Drosophila.
المؤلفون: Schretter CE; Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA. cschrett@caltech.edu., Vielmetter J; Protein Expression Center, Beckman Institute, California Institute of Technology, Pasadena, CA, USA., Bartos I; Department of Physics, Columbia University, New York, NY, USA., Marka Z; Department of Physics, Columbia University, New York, NY, USA., Marka S; Department of Physics, Columbia University, New York, NY, USA., Argade S; GlycoAnalytics Core, University of California, San Diego, CA, USA., Mazmanian SK; Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA. sarkis@caltech.edu.
المصدر: Nature [Nature] 2018 Nov; Vol. 563 (7731), pp. 402-406. Date of Electronic Publication: 2018 Oct 24.
نوع المنشور: Journal Article; Research Support, N.I.H., Extramural; Research Support, Non-U.S. Gov't
اللغة: English
بيانات الدورية: Publisher: Nature Publishing Group Country of Publication: England NLM ID: 0410462 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1476-4687 (Electronic) Linking ISSN: 00280836 NLM ISO Abbreviation: Nature Subsets: MEDLINE
أسماء مطبوعة: Publication: Basingstoke : Nature Publishing Group
Original Publication: London, Macmillan Journals ltd.
مواضيع طبية MeSH: Carbohydrate Metabolism*/drug effects, Drosophila melanogaster/*microbiology , Drosophila melanogaster/*physiology , Gastrointestinal Microbiome/*physiology , Levilactobacillus brevis/*enzymology , Levilactobacillus brevis/*metabolism , Locomotion/*physiology, Aldose-Ketose Isomerases/metabolism ; Animals ; Anti-Bacterial Agents/pharmacology ; Drosophila melanogaster/drug effects ; Drosophila melanogaster/metabolism ; Female ; Gastrointestinal Microbiome/drug effects ; Germ-Free Life ; Levilactobacillus brevis/isolation & purification ; Locomotion/drug effects ; Motor Activity/drug effects ; Motor Activity/physiology ; Neural Pathways ; Neurons/drug effects ; Neurons/metabolism ; Octopamine/metabolism ; Octopamine/pharmacology ; Symbiosis
مستخلص: While research into the biology of animal behaviour has primarily focused on the central nervous system, cues from peripheral tissues and the environment have been implicated in brain development and function 1 . There is emerging evidence that bidirectional communication between the gut and the brain affects behaviours including anxiety, cognition, nociception and social interaction 1-9 . Coordinated locomotor behaviour is critical for the survival and propagation of animals, and is regulated by internal and external sensory inputs 10,11 . However, little is known about how the gut microbiome influences host locomotion, or the molecular and cellular mechanisms involved. Here we report that germ-free status or antibiotic treatment results in hyperactive locomotor behaviour in the fruit fly Drosophila melanogaster. Increased walking speed and daily activity in the absence of a gut microbiome are rescued by mono-colonization with specific bacteria, including the fly commensal Lactobacillus brevis. The bacterial enzyme xylose isomerase from L. brevis recapitulates the locomotor effects of microbial colonization by modulating sugar metabolism in flies. Notably, thermogenetic activation of octopaminergic neurons or exogenous administration of octopamine, the invertebrate counterpart of noradrenaline, abrogates the effects of xylose isomerase on Drosophila locomotion. These findings reveal a previously unappreciated role for the gut microbiome in modulating locomotion, and identify octopaminergic neurons as mediators of peripheral microbial cues that regulate motor behaviour in animals.
التعليقات: Comment in: Nature. 2018 Nov;563(7731):331-332. (PMID: 30425356)
Comment in: Nat Chem Biol. 2019 Jan;15(1):2. (PMID: 30531903)
Comment in: Mol Cell. 2019 Feb 7;73(3):395-397. (PMID: 30735653)
References: Diaz Heijtz, R. et al. Normal gut microbiota modulates brain development and behavior. Proc. Natl Acad. Sci. USA 108, 3047–3052 (2011). (PMID: 10.1073/pnas.1010529108)
Bravo, J. A. et al. Ingestion of Lactobacillus strain regulates emotional behavior and central GABA receptor expression in a mouse via the vagus nerve. Proc. Natl Acad. Sci. USA 108, 16050–16055 (2011). (PMID: 10.1073/pnas.1102999108)
Luczynski, P. et al. Microbiota regulates visceral pain in the mouse. eLife 6, e25887 (2017). (PMID: 10.7554/eLife.25887)
Gacias, M. et al. Microbiota-driven transcriptional changes in prefrontal cortex override genetic differences in social behavior. eLife 5, e13442 (2016). (PMID: 10.7554/eLife.13442)
Fischer, C. N. et al. Metabolite exchange between microbiome members produces compounds that influence Drosophila behavior. eLife 6, 1–25 (2017).
Leitão-Gonçalves, R. et al. Commensal bacteria and essential amino acids control food choice behavior and reproduction. PLoS Biol. 15, e2000862 (2017). (PMID: 10.1371/journal.pbio.2000862)
Wong, A. C. N. et al. Gut microbiota modifies olfactory-guided microbial preferences and foraging decisions in Drosophila. Curr. Biol. 27, 2397–2404.e4 (2017). (PMID: 10.1016/j.cub.2017.07.022)
Liu, W. et al. Enterococci mediate the oviposition preference of Drosophila melanogaster through sucrose catabolism. Sci. Rep. 7, 13420 (2017). (PMID: 10.1038/s41598-017-13705-5)
Sharon, G. et al. Commensal bacteria play a role in mating preference of Drosophila melanogaster. Proc. Natl Acad. Sci. USA 107, 20051–20056 (2010). (PMID: 10.1073/pnas.1009906107)
Huston, S. J. & Jayaraman, V. Studying sensorimotor integration in insects. Curr. Opin. Neurobiol. 21, 527–534 (2011). (PMID: 10.1016/j.conb.2011.05.030)
Dickinson, M. H. et al. How animals move: an integrative view. Science 288, 100–106 (2000). (PMID: 10.1126/science.288.5463.100)
Pearson, K. G. Common principles of motor control in vertebrates and invertebrates. Annu. Rev. Neurosci. 16, 265–297 (1993). (PMID: 10.1146/annurev.ne.16.030193.001405)
Strausfeld, N. J. & Hirth, F. Deep homology of arthropod central complex and vertebrate basal ganglia. Science 340, 157–161 (2013). (PMID: 10.1126/science.1231828)
Martin, J. R., Ernst, R. & Heisenberg, M. Temporal pattern of locomotor activity in Drosophila melanogaster. J. Comp. Physiol. 184, 73–84 (1999). (PMID: 10.1007/s003590050307)
Erkosar, B., Storelli, G., Defaye, A. & Leulier, F. Host-intestinal microbiota mutualism: “learning on the fly”. Cell Host Microbe 13, 8–14 (2013). (PMID: 10.1016/j.chom.2012.12.004)
Wong, C. N., Ng, P. & Douglas, A. E. Low-diversity bacterial community in the gut of the fruitfly Drosophila melanogaster. Environ. Microbiol. 13, 1889–1900 (2011). (PMID: 10.1111/j.1462-2920.2011.02511.x)
Schwarzer, M. et al. Lactobacillus plantarum strain maintains growth of infant mice during chronic undernutrition. Science 351, 854–857 (2016). (PMID: 10.1126/science.aad8588)
Lee, K.-A. et al. Bacterial-derived uracil as a modulator of mucosal immunity and gut-microbe homeostasis in Drosophila. Cell 153, 797–811 (2013). (PMID: 10.1016/j.cell.2013.04.009)
Lemaitre, B. & Miguel-Aliaga, I. The digestive tract of Drosophila melanogaster. Annu. Rev. Genet. 47, 377–404 (2013). (PMID: 10.1146/annurev-genet-111212-133343)
Kimura, K. I. & Truman, J. W. Postmetamorphic cell death in the nervous and muscular systems of Drosophila melanogaster. J. Neurosci. 10, 403–411 (1990). (PMID: 10.1523/JNEUROSCI.10-02-00403.1990)
Tissot, M. & Stocker, R. F. Metamorphosis in Drosophila and other insects: the fate of neurons throughout the stages. Prog. Neurobiol. 62, 89–111 (2000). (PMID: 10.1016/S0301-0082(99)00069-6)
Blacher, E., Levy, M., Tatirovsky, E. & Elinav, E. Microbiome-modulated metabolites at the interface of host immunity. J. Immunol. 198, 572–580 (2017). (PMID: 10.4049/jimmunol.1601247)
Breton, J. et al. Gut commensal E. coli proteins activate host satiety pathways following nutrient-induced bacterial growth. Cell Metab. 23, 324–334 (2016). (PMID: 10.1016/j.cmet.2015.10.017)
Mann, K., Gordon, M. D. & Scott, K. A pair of interneurons influences the choice between feeding and locomotion in Drosophila. Neuron 79, 754–765 (2013). (PMID: 10.1016/j.neuron.2013.06.018)
Wong, A. C.-N., Dobson, A. J. & Douglas, A. E. Gut microbiota dictates the metabolic response of Drosophila to diet. J. Exp. Biol. 217, 1894–1901 (2014). (PMID: 10.1242/jeb.101725)
Kim, E.-K., Park, Y. M., Lee, O. Y. & Lee, W.-J. Draft genome sequence of Lactobacillus brevis strain EW, a Drosophila gut pathobiont. Genome Announc. 1, e00938-13 (2013). (PMID: 10.1128/genomeA.00938-13)
Martino, M. E. et al. Resequencing of the Lactobacillus plantarum strain WJL genome. Genome Announc. 3, e01382-15 (2015). (PMID: 10.1128/genomeA.01382-15)
Baba, T. et al. Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection. Mol. Syst. Biol. 2, 2006.008 (2006). (PMID: 10.1038/msb4100050)
Yamanaka, K. Purification, crystallization and properties of the D-xylose isomerase from Lactobacillus brevis. Biochim. Biophys. Acta 151, 670–680 (1968). (PMID: 10.1016/0005-2744(68)90015-6)
Ridley, E. V., Wong, A. C. N., Westmiller, S. & Douglas, A. E. Impact of the resident microbiota on the nutritional phenotype of Drosophila melanogaster. PLoS ONE 7, e36765 (2012). (PMID: 10.1371/journal.pone.0036765)
Yang, Z. et al. Octopamine mediates starvation-induced hyperactivity in adult Drosophila. Proc. Natl Acad. Sci. USA 112, 5219–5224 (2015). (PMID: 10.1073/pnas.1417838112)
Chen, A. et al. Dispensable, redundant, complementary, and cooperative roles of dopamine, octopamine, and serotonin in Drosophila melanogaster. Genetics 193, 159–176 (2013). (PMID: 10.1534/genetics.112.142042)
Riemensperger, T. et al. Behavioral consequences of dopamine deficiency in the Drosophila central nervous system. Proc. Natl Acad. Sci. USA 108, 834–839 (2011). (PMID: 10.1073/pnas.1010930108)
Mithieux, G. et al. Portal sensing of intestinal gluconeogenesis is a mechanistic link in the diminution of food intake induced by diet protein. Cell Metab. 2, 321–329 (2005). (PMID: 10.1016/j.cmet.2005.09.010)
Hamada, F. N. et al. An internal thermal sensor controlling temperature preference in Drosophila. Nature 454, 217–220 (2008). (PMID: 10.1038/nature07001)
Roeder, T. Tyramine and octopamine: ruling behavior and metabolism. Annu. Rev. Entomol. 50, 447–477 (2005). (PMID: 10.1146/annurev.ento.50.071803.130404)
Crocker, A. & Sehgal, A. Octopamine regulates sleep in Drosophila through protein kinase A-dependent mechanisms. J. Neurosci. 28, 9377–9385 (2008). (PMID: 10.1523/JNEUROSCI.3072-08a.2008)
Crocker, A., Shahidullah, M., Levitan, I. B. & Sehgal, A. Identification of a neural circuit that underlies the effects of octopamine on sleep:wake behavior. Neuron 65, 670–681 (2010). (PMID: 10.1016/j.neuron.2010.01.032)
Selcho, M., Pauls, D., El Jundi, B., Stocker, R. F. & Thum, A. S. The role of octopamine and tyramine in Drosophila larval locomotion. J. Comp. Neurol. 520, 3764–3785 (2012). (PMID: 10.1002/cne.23152)
Saraswati, S., Fox, L. E., Soll, D. R. & Wu, C. F. Tyramine and octopamine have opposite effects on the locomotion of Drosophila larvae. J. Neurobiol. 58, 425–441 (2004). (PMID: 10.1002/neu.10298)
Klaassen, L. W. & Kammer, A. E. Octopamine enhances neuromuscular transmission in developing and adult moths, Manduca sexta. J. Neurobiol. 16, 227–243 (1985). (PMID: 10.1002/neu.480160307)
Weisel-Eichler, A. & Libersat, F. Neuromodulation of flight initiation by octopamine in the cockroach Periplaneta americana. J. Comp. Physiol. A Neuroethol. Sens. Neural Behav. Physiol. 179, 103–112 (1996). (PMID: 10.1007/BF00193438)
Brembs, B., Christiansen, F., Pflüger, H. J. & Duch, C. Flight initiation and maintenance deficits in flies with genetically altered biogenic amine levels. J. Neurosci. 27, 11122–11131 (2007). (PMID: 10.1523/JNEUROSCI.2704-07.2007)
van Breugel, F., Suver, M. P. & Dickinson, M. H. Octopaminergic modulation of the visual flight speed regulator of Drosophila. J. Exp. Biol. 217, 1737–1744 (2014). (PMID: 10.1242/jeb.098665)
Han, D. D., Stein, D. & Stevens, L. M. Investigating the function of follicular subpopulations during Drosophila oogenesis through hormone-dependent enhancer-targeted cell ablation. Development 127, 573–583 (2000). (PMID: 10631178)
Selkrig, J. et al. The Drosophila microbiome has a limited influence on sleep, activity, and courtship behaviors. Sci. Rep. 8, 10646 (2018). (PMID: 10.1038/s41598-018-28764-5)
Nishino, R. et al. Commensal microbiota modulate murine behaviors in a strictly contamination-free environment confirmed by culture-based methods. Neurogastroenterol. Motil. 25, 521–528 (2013). (PMID: 10.1111/nmo.12110)
Lendrum, J. E., Seebach, B., Klein, B. & Liu, S. Sleep and the gut microbiome: antibiotic-induced depletion of the gut microbiota reduces nocturnal sleep in mice. Preprint at https://www.biorxiv.org/content/early/2017/10/05/199075 (2017).
Berridge, C. W. Noradrenergic modulation of arousal. Brain Res. Rev. 58, 1–17 (2008). (PMID: 10.1016/j.brainresrev.2007.10.013)
Monastirioti, M., Linn, C. E. Jr & White, K. Characterization of Drosophila tyramine beta-hydroxylase gene and isolation of mutant flies lacking octopamine. J. Neurosci. 16, 3900–3911 (1996). (PMID: 10.1523/JNEUROSCI.16-12-03900.1996)
Clyne, J. D. & Miesenböck, G. Sex-specific control and tuning of the pattern generator for courtship song in Drosophila. Cell 133, 354–363 (2008). (PMID: 10.1016/j.cell.2008.01.050)
Shiga, Y., Tanaka-Matakatsu, M. & Hayashi, S. A nuclear GFP/β-galactosidase fusion protein as a marker for morphogenesis in living Drosophila. Dev. Growth Differ. 38, 99–106 (1996). (PMID: 10.1046/j.1440-169X.1996.00012.x)
Lee, W. C. & Micchelli, C. A. Development and characterization of a chemically defined food for Drosophila. PLoS ONE 8, e67308 (2013). (PMID: 10.1371/journal.pone.0067308)
Brummel, T., Ching, A., Seroude, L., Simon, A. F. & Benzer, S. Drosophila lifespan enhancement by exogenous bacteria. Proc. Natl Acad. Sci. USA 101, 12974–12979 (2004). (PMID: 10.1073/pnas.0405207101)
Ren, C., Webster, P., Finkel, S. E. & Tower, J. Increased internal and external bacterial load during Drosophila aging without life-span trade-off. Cell Metab. 6, 144–152 (2007). (PMID: 10.1016/j.cmet.2007.06.006)
Ryu, J.-H. et al. Innate immune homeostasis by the homeobox gene caudal and commensal-gut mutualism in Drosophila. Science 319, 777–782 (2008). (PMID: 10.1126/science.1149357)
Storelli, G. et al. Lactobacillus plantarum promotes Drosophila systemic growth by modulating hormonal signals through TOR-dependent nutrient sensing. Cell Metab. 14, 403–414 (2011). (PMID: 10.1016/j.cmet.2011.07.012)
Shin, S. C. et al. Drosophila microbiome modulates host developmental and metabolic homeostasis via insulin signaling. Science 334, 670–674 (2011). (PMID: 10.1126/science.1212782)
Chiu, J. C., Low, K. H., Pike, D. H., Yildirim, E. & Edery, I. Assaying locomotor activity to study circadian rhythms and sleep parameters in Drosophila. J. Vis. Exp. 43, 2157 (2010).
Schmid, B., Helfrich-Förster, C. & Yoshii, T. A new ImageJ plug-in “ActogramJ” for chronobiological analyses. J. Biol. Rhythms 26, 464–467 (2011). (PMID: 10.1177/0748730411414264)
Wolf, F. W., Rodan, A. R., Tsai, L. T.-Y. & Heberlein, U. High-resolution analysis of ethanol-induced locomotor stimulation in Drosophila. J. Neurosci. 22, 11035–11044 (2002). (PMID: 10.1523/JNEUROSCI.22-24-11035.2002)
Simon, J. C. & Dickinson, M. H. A new chamber for studying the behavior of Drosophila. PLoS ONE 5, e8793 (2010). (PMID: 10.1371/journal.pone.0008793)
White, K. E., Humphrey, D. M. & Hirth, F. The dopaminergic system in the aging brain of Drosophila. Front. Neurosci. 4, 205 (2010). (PMID: 10.3389/fnins.2010.00205)
Mendes, C. S., Bartos, I., Akay, T., Márka, S. & Mann, R. S. Quantification of gait parameters in freely walking wild type and sensory deprived Drosophila melanogaster. eLife 2, e00231 (2013). (PMID: 10.7554/eLife.00231)
Shaw, P. J., Cirelli, C., Greenspan, R. J. & Tononi, G. Correlates of sleep and waking in Drosophila melanogaster. Science 287, 1834–1837 (2000). (PMID: 10.1126/science.287.5459.1834)
Yu, Y. et al. Regulation of starvation-induced hyperactivity by insulin and glucagon signaling in adult Drosophila. eLife 5, e15693 (2016). (PMID: 10.7554/eLife.15693)
Qi, W. et al. A quantitative feeding assay in adult Drosophila reveals rapid modulation of food ingestion by its nutritional value. Mol. Brain 8, 87 (2015). (PMID: 10.1186/s13041-015-0179-x)
Chakrabarti, S., Poidevin, M. & Lemaitre, B. The Drosophila MAPK p38c regulates oxidative stress and lipid homeostasis in the intestine. PLoS Genet. 10, e1004659 (2014). (PMID: 10.1371/journal.pgen.1004659)
معلومات مُعتمدة: R01 NS085910 United States NS NINDS NIH HHS
المشرفين على المادة: 0 (Anti-Bacterial Agents)
14O50WS8JD (Octopamine)
EC 5.3.1.- (Aldose-Ketose Isomerases)
EC 5.3.1.5 (xylose isomerase)
تواريخ الأحداث: Date Created: 20181026 Date Completed: 20190520 Latest Revision: 20221207
رمز التحديث: 20231215
مُعرف محوري في PubMed: PMC6237646
DOI: 10.1038/s41586-018-0634-9
PMID: 30356215
قاعدة البيانات: MEDLINE
الوصف
تدمد:1476-4687
DOI:10.1038/s41586-018-0634-9