دورية أكاديمية

IL-10 signaling prevents gluten-dependent intraepithelial CD4 + cytotoxic T lymphocyte infiltration and epithelial damage in the small intestine.

التفاصيل البيبلوغرافية
العنوان: IL-10 signaling prevents gluten-dependent intraepithelial CD4 + cytotoxic T lymphocyte infiltration and epithelial damage in the small intestine.
المؤلفون: Costes LMM; Laboratory of Pediatrics, Division of Gastroenterology and Nutrition, Erasmus University Medical Center-Sophia Children's Hospital, Rotterdam, 3000 CA, The Netherlands., Lindenbergh-Kortleve DJ; Laboratory of Pediatrics, Division of Gastroenterology and Nutrition, Erasmus University Medical Center-Sophia Children's Hospital, Rotterdam, 3000 CA, The Netherlands., van Berkel LA; Laboratory of Pediatrics, Division of Gastroenterology and Nutrition, Erasmus University Medical Center-Sophia Children's Hospital, Rotterdam, 3000 CA, The Netherlands., Veenbergen S; Laboratory of Pediatrics, Division of Gastroenterology and Nutrition, Erasmus University Medical Center-Sophia Children's Hospital, Rotterdam, 3000 CA, The Netherlands., Raatgeep HRC; Laboratory of Pediatrics, Division of Gastroenterology and Nutrition, Erasmus University Medical Center-Sophia Children's Hospital, Rotterdam, 3000 CA, The Netherlands., Simons-Oosterhuis Y; Laboratory of Pediatrics, Division of Gastroenterology and Nutrition, Erasmus University Medical Center-Sophia Children's Hospital, Rotterdam, 3000 CA, The Netherlands., van Haaften DH; Laboratory of Pediatrics, Division of Gastroenterology and Nutrition, Erasmus University Medical Center-Sophia Children's Hospital, Rotterdam, 3000 CA, The Netherlands., Karrich JJ; Department of Hematology, Erasmus University Medical Center, Rotterdam, 3000 CA, The Netherlands., Escher JC; Department of Pediatric Gastroenterology, Erasmus University Medical Center-Sophia Children's Hospital, Rotterdam, The Netherlands., Groeneweg M; Department of Pediatrics, Maasstad Hospital, Rotterdam, 3079 DZ, The Netherlands., Clausen BE; Institute for Molecular Medicine, University Medical Center of Johannes Gutenberg University, Mainz, 55131, Germany., Cupedo T; Department of Hematology, Erasmus University Medical Center, Rotterdam, 3000 CA, The Netherlands., Samsom JN; Laboratory of Pediatrics, Division of Gastroenterology and Nutrition, Erasmus University Medical Center-Sophia Children's Hospital, Rotterdam, 3000 CA, The Netherlands. j.samsom@erasmusmc.nl.
المصدر: Mucosal immunology [Mucosal Immunol] 2019 Mar; Vol. 12 (2), pp. 479-490. Date of Electronic Publication: 2018 Dec 12.
نوع المنشور: Journal Article; Research Support, Non-U.S. Gov't
اللغة: English
بيانات الدورية: Publisher: Elsevier Country of Publication: United States NLM ID: 101299742 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1935-3456 (Electronic) Linking ISSN: 19330219 NLM ISO Abbreviation: Mucosal Immunol Subsets: MEDLINE
أسماء مطبوعة: Publication: 2023- : [New York, NY] : Elsevier
Original Publication: New York, NY : Nature Pub. Group, c2008-
مواضيع طبية MeSH: CD4-Positive T-Lymphocytes/*immunology , Celiac Disease/*immunology , Interleukin-10/*metabolism , Intestinal Mucosa/*immunology , Intraepithelial Lymphocytes/*immunology, Animals ; Cell Death ; Cell Differentiation ; Cell Movement ; Child ; Cytotoxicity, Immunologic ; Glutens/immunology ; Granzymes/metabolism ; Homeostasis ; Humans ; Immune Tolerance ; Interleukin-10/genetics ; Lymphocyte Activation ; Mice ; Mice, Inbred C57BL ; Mice, Transgenic ; Signal Transduction ; T-Box Domain Proteins/genetics ; T-Box Domain Proteins/metabolism
مستخلص: Breach of tolerance to gluten leads to the chronic small intestinal enteropathy celiac disease. A key event in celiac disease development is gluten-dependent infiltration of activated cytotoxic intraepithelial lymphocytes (IELs), which cytolyze epithelial cells causing crypt hyperplasia and villous atrophy. The mechanisms leading to gluten-dependent small intestinal IEL infiltration and activation remain elusive. We have demonstrated that under homeostatic conditions in mice, gluten drives the differentiation of anti-inflammatory T cells producing large amounts of the immunosuppressive cytokine interleukin-10 (IL-10). Here we addressed whether this dominant IL-10 axis prevents gluten-dependent infiltration of activated cytotoxic IEL and subsequent small intestinal enteropathy. We demonstrate that IL-10 regulation prevents gluten-induced cytotoxic inflammatory IEL infiltration. In particular, IL-10 suppresses gluten-induced accumulation of a specialized population of cytotoxic CD4 + CD8αα + IEL (CD4 + CTL) expressing Tbx21, Ifng, and Il21, and a disparate non-cytolytic CD4 + CD8α - IEL population expressing Il17a, Il21, and Il10. Concomitantly, IL-10 suppresses gluten-dependent small intestinal epithelial hyperproliferation and upregulation of stress-induced molecules on epithelial cells. Remarkably, frequencies of granzyme B + CD4 + CD8α + IEL are increased in pediatric celiac disease patient biopsies. These findings demonstrate that IL-10 is pivotal to prevent gluten-induced small intestinal inflammation and epithelial damage, and imply that CD4 + CTL are potential new players into these processes.
References: Lundin, K. E. et al. Gliadin-specific, HLA-DQ(alpha 1*0501,beta 1*0201) restricted T cells isolated from the small intestinal mucosa of celiac disease patients. J. Exp. Med. 178, 187–196 (1993). (PMID: 10.1084/jem.178.1.187)
Nilsen, E. M. et al. Gluten specific, HLA-DQ restricted T cells from coeliac mucosa produce cytokines with Th1 or Th0 profile dominated by interferon gamma. Gut 37, 766–776 (1995). (PMID: 10.1136/gut.37.6.766)
Volta, U. et al. Antibodies to gliadin detected by immunofluorescence and a micro-ELISA method: markers of active childhood and adult coeliac disease. Gut 26, 667–671 (1985). (PMID: 10.1136/gut.26.7.667)
Dieterich, W. et al. Identification of tissue transglutaminase as the autoantigen of celiac disease. Nat. Med. 3, 797–801 (1997). (PMID: 10.1038/nm0797-797)
Setty, M. et al. Distinct and synergistic contributions of epithelial stress and adaptive immunity to functions of intraepithelial killer cells and active celiac disease. Gastroenterology 149, 681–691e10 (2015). (PMID: 10.1053/j.gastro.2015.05.013)
de Kauwe, A. L. et al. Resistance to celiac disease in humanized HLA-DR3-DQ2-transgenic mice expressing specific anti-gliadin CD4 + T cells. J. Immunol. 182, 7440–7450 (2009). (PMID: 10.4049/jimmunol.0900233)
Du Pre, M. F. et al. Tolerance to ingested deamidated gliadin in mice is maintained by splenic, type 1 regulatory T cells. Gastroenterology 141, 610–620 (2011). 20 e1-2. (PMID: 10.1053/j.gastro.2011.04.048)
Husby, S. et al. European Society for Pediatric Gastroenterology, Hepatology, and Nutrition guidelines for the diagnosis of coeliac disease. J. Pediatr. Gastroenterol. Nutr. 54, 136–160 (2012). (PMID: 10.1097/MPG.0b013e31821a23d0)
Marsh, M. N. Grains of truth: evolutionary changes in small intestinal mucosa in response to environmental antigen challenge. Gut 31, 111–114 (1990). (PMID: 10.1136/gut.31.1.111)
Catassi, C. et al. Diagnosis of non-celiac gluten sensitivity (NCGS): the Salerno Experts’ Criteria. Nutrients 7, 4966–4977 (2015). (PMID: 10.3390/nu7064966)
Troncone, R. et al. In siblings of celiac children, rectal gluten challenge reveals gluten sensitization not restricted to celiac HLA. Gastroenterology 111, 318–324 (1996). (PMID: 10.1053/gast.1996.v111.pm8690196)
Jarry, A., Cerf-Bensussan, N., Brousse, N., Selz, F. & Guy-Grand, D. Subsets of CD3 + (T cell receptor alpha/beta or gamma/delta) and CD3- lymphocytes isolated from normal human gut epithelium display phenotypical features different from their counterparts in peripheral blood. Eur. J. Immunol. 20, 1097–1103 (1990). (PMID: 10.1002/eji.1830200523)
Abadie, V., Discepolo, V. & Jabri, B. Intraepithelial lymphocytes in celiac disease immunopathology. Semin. Immunopathol. 34, 551–566 (2012). (PMID: 10.1007/s00281-012-0316-x)
Cheroutre, H., Lambolez, F. & Mucida, D. The light and dark sides of intestinal intraepithelial lymphocytes. Nat. Rev. Immunol. 11, 445–456 (2011). (PMID: 10.1038/nri3007)
Kutlu, T. et al. Numbers of T cell receptor (TCR) alpha beta + but not of TcR gamma delta + intraepithelial lymphocytes correlate with the grade of villous atrophy in coeliac patients on a long term normal diet. Gut 34, 208–214 (1993). (PMID: 10.1136/gut.34.2.208)
Halstensen, T. S., Scott, H. & Brandtzaeg, P. Intraepithelial T cells of the TcR gamma/delta + CD8- and V delta 1/J delta 1 + phenotypes are increased in coeliac disease. Scand. J. Immunol. 30, 665–672 (1989). (PMID: 10.1111/j.1365-3083.1989.tb02474.x)
Calleja, S. et al. Dynamics of non-conventional intraepithelial lymphocytes-NK, NKT, and gammadelta T-in celiac disease: relationship with age, diet, and histopathology. Dig. Dis. Sci. 56, 2042–2049 (2011). (PMID: 10.1007/s10620-010-1534-5)
Guy-Grand, D., Cuenod-Jabri, B., Malassis-Seris, M., Selz, F. & Vassalli, P. Complexity of the mouse gut T cell immune system: identification of two distinct natural killer T cell intraepithelial lineages. Eur. J. Immunol. 26, 2248–2256 (1996). (PMID: 10.1002/eji.1830260942)
Meresse, B. et al. Coordinated induction by IL15 of a TCR-independent NKG2D signaling pathway converts CTL into lymphokine-activated killer cells in celiac disease. Immunity 21, 357–366 (2004). (PMID: 10.1016/j.immuni.2004.06.020)
Mention, J. J. et al. Interleukin 15: a key to disrupted intraepithelial lymphocyte homeostasis and lymphomagenesis in celiac disease. Gastroenterology 125, 730–745 (2003). (PMID: 10.1016/S0016-5085(03)01047-3)
Roberts, A. I. et al. NKG2D receptors induced by IL-15 costimulate CD28-negative effector CTL in the tissue microenvironment. J. Immunol. 167, 5527–5530 (2001). (PMID: 10.4049/jimmunol.167.10.5527)
Jabri, B. et al. Selective expansion of intraepithelial lymphocytes expressing the HLA-E-specific natural killer receptor CD94 in celiac disease. Gastroenterology 118, 867–879 (2000). (PMID: 10.1016/S0016-5085(00)70173-9)
Kvale, D., Brandtzaeg, P. & Lovhaug, D. Up-regulation of the expression of secretory component and HLA molecules in a human colonic cell line by tumour necrosis factor-alpha and gamma interferon. Scand. J. Immunol. 28, 351–357 (1988). (PMID: 10.1111/j.1365-3083.1988.tb01460.x)
Scott, H., Sollid, L. M., Fausa, O., Brandtzaeg, P. & Thorsby, E. Expression of major histocompatibility complex class II subregion products by jejunal epithelium in patients with coeliac disease. Scand. J. Immunol. 26, 563–571 (1987). (PMID: 10.1111/j.1365-3083.1987.tb02290.x)
Braud, V. M. et al. HLA-E binds to natural killer cell receptors CD94/NKG2A, B and C. Nature 391, 795–799 (1998). (PMID: 10.1038/35869)
Bauer, S. et al. Activation of NK cells and T cells by NKG2D, a receptor for stress-inducible MICA. Science 285, 727–729 (1999). (PMID: 10.1126/science.285.5428.727)
Groh, V. et al. Cell stress-regulated human major histocompatibility complex class I gene expressed in gastrointestinal epithelium. Proc. Natl. Acad. Sci. USA 93, 12445–12450 (1996). (PMID: 10.1073/pnas.93.22.12445)
Groh, V., Steinle, A., Bauer, S. & Spies, T. Recognition of stress-induced MHC molecules by intestinal epithelial gammadelta T cells. Science 279, 1737–1740 (1998). (PMID: 10.1126/science.279.5357.1737)
Hue, S. et al. A direct role for NKG2D/MICA interaction in villous atrophy during celiac disease. Immunity 21, 367–377 (2004). (PMID: 10.1016/j.immuni.2004.06.018)
Di Sabatino, A. et al. Epithelium derived interleukin 15 regulates intraepithelial lymphocyte Th1 cytokine production, cytotoxicity, and survival in coeliac disease. Gut 55, 469–477 (2006). (PMID: 10.1136/gut.2005.068684)
Gianfrani, C. et al. Gliadin-specific type 1 regulatory T cells from the intestinal mucosa of treated celiac patients inhibit pathogenic T cells. J. Immunol. 177, 4178–4186 (2006). (PMID: 10.4049/jimmunol.177.6.4178)
van Leeuwen, M. A. et al. Macrophage-mediated gliadin degradation and concomitant IL-27 production drive IL-10- and IFN-gamma-secreting Tr1-like-cell differentiation in a murine model for gluten tolerance. Mucosal Immunol. 10, 635–649 (2017). (PMID: 10.1038/mi.2016.76)
Huibregtse, I. L. et al. Induction of antigen-specific tolerance by oral administration of Lactococcus lactis delivered immunodominant DQ8-restricted gliadin peptide in sensitized nonobese diabetic Abo Dq8 transgenic mice. J. Immunol. 183, 2390–2396 (2009). (PMID: 10.4049/jimmunol.0802891)
Girard-Madoux, M. J. et al. IL-10 control of CD11c + myeloid cells is essential to maintain immune homeostasis in the small and large intestine. Oncotarget 7, 32015–32030 (2016). (PMID: 10.18632/oncotarget.8337)
Shouval, D. S. et al. Interleukin-10 receptor signaling in innate immune cells regulates mucosal immune tolerance and anti-inflammatory macrophage function. Immunity 40, 706–719 (2014). (PMID: 10.1016/j.immuni.2014.03.011)
Zigmond, E. et al. Macrophage-restricted interleukin-10 receptor deficiency, but not IL-10 deficiency, causes severe spontaneous colitis. Immunity 40, 720–733 (2014). (PMID: 10.1016/j.immuni.2014.03.012)
Li, B. et al. IL-10 engages macrophages to shift Th17 cytokine dependency and pathogenicity during T-cell-mediated colitis. Nat. Commun. 6, 6131 (2015). (PMID: 10.1038/ncomms7131)
Jabri, B. & Abadie, V. IL-15 functions as a danger signal to regulate tissue-resident T cells and tissue destruction. Nat. Rev. Immunol. 15, 771–783 (2015). (PMID: 10.1038/nri3919)
Wapenaar, M. C. et al. The interferon gamma gene in celiac disease: augmented expression correlates with tissue damage but no evidence for genetic susceptibility. J. Autoimmun. 23, 183–190 (2004). (PMID: 10.1016/j.jaut.2004.05.004)
van Leeuwen, M. A. et al. Increased production of interleukin-21, but not interleukin-17A, in the small intestine characterizes pediatric celiac disease. Mucosal Immunol. 6, 1202–1213 (2013). (PMID: 10.1038/mi.2013.19)
Sarra, M. et al. IL-15 positively regulates IL-21 production in celiac disease mucosa. Mucosal Immunol. 6, 244–255 (2013). (PMID: 10.1038/mi.2012.65)
Bodd, M. et al. HLA-DQ2-restricted gluten-reactive T cells produce IL-21 but not IL-17 or IL-22. Mucosal Immunol. 3, 594–601 (2010). (PMID: 10.1038/mi.2010.36)
Mucida, D. et al. Transcriptional reprogramming of mature CD4( + ) helper T cells generates distinct MHC class II-restricted cytotoxic T lymphocytes. Nat. Immunol. 14, 281–289 (2013). (PMID: 10.1038/ni.2523)
Reimann, J. & Rudolphi, A. Co-expression of CD8 alpha in CD4 + T cell receptor alpha beta + T cells migrating into the murine small intestine epithelial layer. Eur. J. Immunol. 25, 1580–1588 (1995). (PMID: 10.1002/eji.1830250617)
Reis, B. S., Rogoz, A., Costa-Pinto, F. A., Taniuchi, I. & Mucida, D. Mutual expression of the transcription factors Runx3 and ThPOK regulates intestinal CD4( + ) T cell immunity. Nat. Immunol. 14, 271–280 (2013). (PMID: 10.1038/ni.2518)
Cortez, V. S. et al. CRTAM controls residency of gut CD4 + CD8 + T cells in the steady state and maintenance of gut CD4 + Th17 during parasitic infection. J. Exp. Med. 211, 623–633 (2014). (PMID: 10.1084/jem.20130904)
Takeuchi, A. et al. CRTAM determines the CD4 + cytotoxic T lymphocyte lineage. J. Exp. Med. 213, 123–138 (2016). (PMID: 10.1084/jem.20150519)
Matysiak-Budnik, T. et al. Alterations of the intestinal transport and processing of gliadin peptides in celiac disease. Gastroenterology 125, 696–707 (2003). (PMID: 10.1016/S0016-5085(03)01049-7)
Cervantes-Barragan, L. et al. Lactobacillus reuteri induces gut intraepithelial CD4(+)CD8alphaalpha(+) T cells. Science 357, 806–810 (2017). (PMID: 10.1126/science.aah5825)
Jellison, E. R., Kim, S. K. & Welsh, R. M. Cutting edge: MHC class II-restricted killing in vivo during viral infection. J. Immunol. 174, 614–618 (2005). (PMID: 10.4049/jimmunol.174.2.614)
Namekawa, T., Wagner, U. G., Goronzy, J. J. & Weyand, C. M. Functional subsets of CD4 T cells in rheumatoid synovitis. Arthritis Rheum. 41, 2108–2116 (1998). (PMID: 10.1002/1529-0131(199812)41:12<2108::AID-ART5>3.0.CO;2-Q)
Duftner, C. et al. Prevalence, clinical relevance and characterization of circulating cytotoxic CD4 + CD28- T cells in ankylosing spondylitis. Arthritis Res. Ther. 5, R292–R300 (2003). (PMID: 10.1186/ar793)
Luda, K. M. et al. IRF8 transcription-factor-dependent classical dendritic cells are essential for intestinal T cell homeostasis. Immunity 44, 860–874 (2016). (PMID: 10.1016/j.immuni.2016.02.008)
Bouziat, R. et al. Reovirus infection triggers inflammatory responses to dietary antigens and development of celiac disease. Science 356, 44–50 (2017). (PMID: 10.1126/science.aah5298)
المشرفين على المادة: 0 (T-Box Domain Proteins)
0 (T-box transcription factor TBX21)
130068-27-8 (Interleukin-10)
8002-80-0 (Glutens)
EC 3.4.21.- (Granzymes)
تواريخ الأحداث: Date Created: 20181214 Date Completed: 20190624 Latest Revision: 20230203
رمز التحديث: 20240628
DOI: 10.1038/s41385-018-0118-0
PMID: 30542112
قاعدة البيانات: MEDLINE
الوصف
تدمد:1935-3456
DOI:10.1038/s41385-018-0118-0