دورية أكاديمية

Enzyme-free synthesis of cyclic single-stranded DNA constructs containing a single triazole, amide or phosphoramidate backbone linkage and their use as templates for rolling circle amplification and nanoflower formation.

التفاصيل البيبلوغرافية
العنوان: Enzyme-free synthesis of cyclic single-stranded DNA constructs containing a single triazole, amide or phosphoramidate backbone linkage and their use as templates for rolling circle amplification and nanoflower formation.
المؤلفون: Chen J; Chemistry Research Laboratory , University of Oxford , Oxford , OX1 3TA , UK . Email: tom.brown@chem.ox.ac.uk., Baker YR; Chemistry Research Laboratory , University of Oxford , Oxford , OX1 3TA , UK . Email: tom.brown@chem.ox.ac.uk., Brown A; ATDBio , Magdalen Centre , Oxford Science Park , Oxford , OX4 4GA , UK., El-Sagheer AH; Chemistry Research Laboratory , University of Oxford , Oxford , OX1 3TA , UK . Email: tom.brown@chem.ox.ac.uk.; Chemistry Branch , Department of Science and Mathematics , Suez University , Suez 43721 , Egypt., Brown T; Chemistry Research Laboratory , University of Oxford , Oxford , OX1 3TA , UK . Email: tom.brown@chem.ox.ac.uk.
المصدر: Chemical science [Chem Sci] 2018 Aug 24; Vol. 9 (42), pp. 8110-8120. Date of Electronic Publication: 2018 Aug 24 (Print Publication: 2018).
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Royal Society of Chemistry Country of Publication: England NLM ID: 101545951 Publication Model: eCollection Cited Medium: Print ISSN: 2041-6520 (Print) Linking ISSN: 20416520 NLM ISO Abbreviation: Chem Sci Subsets: PubMed not MEDLINE
أسماء مطبوعة: Original Publication: Cambridge, UK : Royal Society of Chemistry, [2010]-
مستخلص: Cyclic oligonucleotides are valuable targets with a broad range of potential applications spanning molecular biology and nanotechnology. Of particular importance is their role as templates in the rolling circle amplification (RCA) reaction. We describe three different chemical cyclisation methods for the preparation of single-stranded cyclic DNA constructs. These chemical cyclisation reactions are cheaper to carry out than the enzymatic reaction, and more amenable to preparative scale purification and characterisation of the cyclic product. They can also be performed under denaturing conditions and are therefore particularly valuable for cyclic DNA templates that contain secondary structures. The resulting single-stranded cyclic DNA constructs contain a single non-canonical backbone linkage at the ligation point (triazole, amide or phosphoramidate). They were compared to unmodified cyclic DNA in rolling circle amplification reactions using φ-29 and Bst 2.0 DNA polymerase enzymes. The cyclic templates containing a phosphoramidate linkage were particularly well tolerated by φ-29 polymerase, consistently performing as well in RCA as the unmodified DNA controls. Moreover, these phosphoramidate-modified cyclic constructs can be readily produced in oligonucleotide synthesis facilities from commercially available precursors. Phosphoramidate ligation therefore holds promise as a practical, scalable method for the synthesis of fully biocompatible cyclic RCA templates. The triazole-modified cyclic templates generally gave lower and more variable yields of RCA products, a significant proportion of which were double-stranded, while the performances of the templates containing an amide linkage lie in between those of the phosphoramidate- and triazole-containing templates.
References: Nat Commun. 2014 Sep 17;5:4940. (PMID: 25229207)
J Am Chem Soc. 2012 Feb 15;134(6):2888-91. (PMID: 22283197)
Nucleic Acids Res. 1981 Nov 11;9(21):5747-61. (PMID: 6273807)
Appl Environ Microbiol. 2005 Dec;71(12):7933-40. (PMID: 16332770)
J Am Chem Soc. 2017 Jul 12;139(27):9128-9131. (PMID: 28635257)
Nat Nanotechnol. 2018 Jun;13(6):496-503. (PMID: 29632399)
Nucleic Acids Res. 2012 Nov 1;40(20):10567-75. (PMID: 22904087)
Acc Chem Res. 2012 Aug 21;45(8):1258-67. (PMID: 22439702)
J Am Chem Soc. 2013 Nov 6;135(44):16438-45. (PMID: 24164620)
ACS Appl Mater Interfaces. 2015 Nov 4;7(43):24069-74. (PMID: 26440045)
Anal Biochem. 1999 Mar 15;268(2):278-88. (PMID: 10075818)
Nat Commun. 2013;4:2275. (PMID: 24013352)
Nat Mater. 2012 Feb 26;11(4):316-22. (PMID: 22367004)
Biochemistry. 1967 Dec;6(12):3632-9. (PMID: 6076617)
J Am Chem Soc. 2017 Feb 1;139(4):1575-1583. (PMID: 28097865)
Nucleic Acids Res. 1992 Jul 11;20(13):3403-9. (PMID: 1630911)
RSC Adv. 2018 May 23;8(34):18972-18979. (PMID: 35539641)
Nat Nanotechnol. 2012 Dec;7(12):816-20. (PMID: 23202472)
Acc Chem Res. 2016 Nov 15;49(11):2540-2550. (PMID: 27797171)
Nat Genet. 1998 Jul;19(3):225-32. (PMID: 9662393)
Annu Rev Biophys Biomol Struct. 1996;25:1-28. (PMID: 8800462)
Nucleic Acids Res. 1988 May 11;16(9):3721-38. (PMID: 3375071)
Proc Natl Acad Sci U S A. 2013 May 14;110(20):8170-5. (PMID: 23630281)
Chem Commun (Camb). 2017 Sep 26;53(77):10700-10702. (PMID: 28913522)
J Am Chem Soc. 2005 Feb 23;127(7):2022-3. (PMID: 15713061)
Proc Natl Acad Sci U S A. 2011 Jul 12;108(28):11338-43. (PMID: 21709264)
Histochem Cell Biol. 2006 Aug;126(2):159-64. (PMID: 16807721)
Chem Soc Rev. 2014 May 21;43(10):3324-41. (PMID: 24643375)
Nano Lett. 2015 Oct 14;15(10):7133-7. (PMID: 26360345)
Nucleic Acids Res. 2009 Feb;37(3):866-76. (PMID: 19103663)
Proc Natl Acad Sci U S A. 2001 Dec 4;98(25):14238-43. (PMID: 11724932)
Angew Chem Int Ed Engl. 2014 Jun 2;53(23):5821-6. (PMID: 24753303)
J Am Chem Soc. 2013 Feb 27;135(8):2959-62. (PMID: 23414516)
Nat Biotechnol. 2002 Apr;20(4):359-65. (PMID: 11923841)
Nat Protoc. 2015 Oct;10(10):1508-24. (PMID: 26357007)
J Am Chem Soc. 1992 Apr 1;114(9):3523-3527. (PMID: 27867206)
ACS Chem Biol. 2016 Nov 18;11(11):3165-3171. (PMID: 27668519)
Chem Commun (Camb). 2015 Feb 7;51(11):2114-7. (PMID: 25536491)
Acc Chem Res. 1998 Aug 18;31(8):502-510. (PMID: 19946615)
Adv Mater. 2017 Jul;29(26):. (PMID: 28474844)
Angew Chem Int Ed Engl. 2014 Feb 24;53(9):2362-5. (PMID: 24452865)
Anal Biochem. 1997 Feb 15;245(2):154-60. (PMID: 9056205)
Angew Chem Int Ed Engl. 2006 Apr 3;45(15):2409-13. (PMID: 16526071)
Nano Lett. 2009 May;9(5):2040-3. (PMID: 19323557)
Chembiochem. 2016 Jun 16;17(12):1150-5. (PMID: 27225865)
Biotechniques. 2000 Jul;29(1):78-81. (PMID: 10907080)
J Am Chem Soc. 2014 Oct 22;136(42):14722-5. (PMID: 25336272)
Bioconjug Chem. 2014 Aug 20;25(8):1453-61. (PMID: 25061844)
Anal Chem. 2014 Feb 4;86(3):1808-15. (PMID: 24417222)
Angew Chem Int Ed Engl. 2009;48(19):3512-5. (PMID: 19360817)
Bioorg Med Chem. 2009 Jun 1;17(11):3782-8. (PMID: 19427792)
Biochem Soc Trans. 2016 Jun 15;44(3):709-15. (PMID: 27284032)
Genome Res. 2001 Jun;11(6):1095-9. (PMID: 11381035)
Chembiochem. 2018 Jun 18;19(12):1250-1254. (PMID: 29479781)
Angew Chem Int Ed Engl. 2014 Jul 14;53(29):7552-5. (PMID: 24890276)
Nucleic Acids Res. 1998 Nov 15;26(22):5073-8. (PMID: 9801302)
Biosens Bioelectron. 2011 Mar 15;26(7):3309-12. (PMID: 21277763)
J Am Chem Soc. 2018 Jun 6;140(22):6780-6784. (PMID: 29772170)
Chem Sci. 2017 Oct 1;8(10):7098-7105. (PMID: 29147539)
Angew Chem Int Ed Engl. 2008;47(34):6330-7. (PMID: 18680110)
Nucleic Acids Res. 2014;42(16):10596-604. (PMID: 25120268)
Nat Chem. 2017 Nov;9(11):1089-1098. (PMID: 29064492)
Nano Lett. 2013 May 8;13(5):2303-8. (PMID: 23557381)
Antimicrob Agents Chemother. 2008 Sep;52(9):3068-73. (PMID: 18606836)
Nucleic Acids Res. 2017 Sep 6;45(15):e139. (PMID: 28655200)
تواريخ الأحداث: Date Created: 20181214 Latest Revision: 20240403
رمز التحديث: 20240403
مُعرف محوري في PubMed: PMC6238721
DOI: 10.1039/c8sc02952k
PMID: 30542561
قاعدة البيانات: MEDLINE
الوصف
تدمد:2041-6520
DOI:10.1039/c8sc02952k