دورية أكاديمية

Synthesis and antimicrobial photodynamic effect of methylene blue conjugated carbon nanotubes on E. coli and S. aureus.

التفاصيل البيبلوغرافية
العنوان: Synthesis and antimicrobial photodynamic effect of methylene blue conjugated carbon nanotubes on E. coli and S. aureus.
المؤلفون: Parasuraman P; Department of Microbiology, School of Life Sciences, Pondicherry University, Puducherry, 605 014, India., Anju VT; Department of Microbiology, School of Life Sciences, Pondicherry University, Puducherry, 605 014, India., Lal SBS; Department of Physics, School of Physical, Chemical & Applied Sciences, Pondicherry University, Puducherry, 605014, India., Sharan A; Department of Physics, School of Physical, Chemical & Applied Sciences, Pondicherry University, Puducherry, 605014, India., Busi S; Department of Microbiology, School of Life Sciences, Pondicherry University, Puducherry, 605 014, India., Kaviyarasu K; UNESCO-UNISA Africa Chair in Nanosciences/Nanotechnology Laboratories, College of Graduate Studies, University of South Africa (UNISA), Muckleneuk Ridge, P O Box 392, Pretoria, South Africa.; Nanosciences African Network (NANOAFNET), Materials Research Group (MRG), iThemba LABS-National Research Foundation (NRF), 1 Old Faure Road, P O Box 722, Somerset West, Western Cape Province, 7129, South Africa., Arshad M; Clinical Laboratory Sciences Department, College of Applied Medical Science, King Saud University, P.O. 2455, Riyadh, 11451, Saudi Arabia., Dawoud TMS; Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia., Syed A; Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia. assyed@ksu.edu.sa.
المصدر: Photochemical & photobiological sciences : Official journal of the European Photochemistry Association and the European Society for Photobiology [Photochem Photobiol Sci] 2019 Feb 13; Vol. 18 (2), pp. 563-576.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Springer Country of Publication: England NLM ID: 101124451 Publication Model: Print Cited Medium: Internet ISSN: 1474-9092 (Electronic) Linking ISSN: 1474905X NLM ISO Abbreviation: Photochem Photobiol Sci Subsets: MEDLINE
أسماء مطبوعة: Publication: 2021- : [London] : Springer
Original Publication: Cambridge, UK : Royal Society of Chemistry, c2002-
مواضيع طبية MeSH: Escherichia coli/*drug effects , Escherichia coli/*radiation effects , Methylene Blue/*chemistry , Methylene Blue/*pharmacology , Nanotubes, Carbon/*chemistry , Staphylococcus aureus/*drug effects , Staphylococcus aureus/*radiation effects, Anti-Bacterial Agents/chemical synthesis ; Anti-Bacterial Agents/chemistry ; Anti-Bacterial Agents/pharmacology ; Biofilms/drug effects ; Biofilms/radiation effects ; Cell Survival/drug effects ; Cell Survival/radiation effects ; Chemistry Techniques, Synthetic ; Escherichia coli/metabolism ; Escherichia coli/physiology ; Light ; Lipid Peroxidation/drug effects ; Lipid Peroxidation/radiation effects ; Methylene Blue/chemical synthesis ; Reactive Oxygen Species/metabolism ; Staphylococcus aureus/metabolism ; Staphylococcus aureus/physiology
مستخلص: Catheter-related bloodstream infections (CRBSIs) are one of the leading causes of high morbidity and mortality in hospitalized patients. The proper management, prevention and treatment of CRBSIs rely on the understanding of these highly resistant bacterial infections. The emergence of such a challenge to public health has resulted in the development of an alternative antimicrobial strategy called antimicrobial photodynamic therapy (aPDT). In the presence of a photosensitizer (PS), light of the appropriate wavelength, and molecular oxygen, aPDT generates reactive oxygen species (ROS) which lead to microbial cell death and cell damage. We investigated the enhanced antibacterial and antibiofilm activities of methylene blue conjugated carbon nanotubes (MBCNTs) on biofilms of E. coli and S. aureus using a laser light source at 670 nm with radiant exposure of 58.49 J cm-2. Photodynamic inactivation in test cultures showed 4.86 and 5.55 log10 reductions in E. coli and S. aureus, respectively. Biofilm inhibition assays, cell viability assays and EPS reduction assays showed higher inhibition in S. aureus than in E. coli, suggesting that pronounced ROS generation occurred due to photodynamic therapy in S. aureus. Results from a study into the mechanism of action proved that the cell membrane is the main target for photodynamic inactivation. Comparatively higher photodynamic inactivation was observed in Gram positive bacteria due to the increased production of free radicals inside these cells. From this study, we conclude that MBCNT can be used as a promising nanocomposite for the eradication of dangerous pathogens on medical devices.
التعليقات: Erratum in: Photochem Photobiol Sci. 2019 Jan 24;:. (PMID: 30675604)
References: L. Zhang, J. C. Brownlie and C. Rickard, The Battle Against Microbial Pathogens: Basic Science, Technological Advances and Educational Program, in, Biofilms and intravascular catheter related bloodstream infections, ed. A. Méndez-Vilas, Formatex Research Center, Spain, 2015, pp. 405–412.
J. M. Weber, R. L. Sheridan, S. Fagan, C. M. Ryan, M. S. Pasternack and R. G. Tompkins, Incidence of Catheter-Associated Bloodstream Infection After Introduction of Minocycline and Rifampin Antimicrobial-Coated Catheters in a Pediatric Burn Population, J. Burn Care Res., 2012, 33(4), 539–543. (PMID: 10.1097/BCR.0b013e31823c4cd5)
K. Johani, D. Abualsaud, D. M. Costa, H. Hu, G. Whiteley, A. Deva and K. Vickery, Characterization of microbial community composition, antimicrobial resistance and biofilm on intensive care surfaces, J. Infect. Public Health., 2018, 11(3), 418–424. (PMID: 10.1016/j.jiph.2017.10.005)
L. Zhang, J. Gowardman, M. Morrison, L. Krause, E. G. Playford and C. M. Rickard, Molecular investigation of bacterial communities on intravascular catheters: no longer just Staphylococcus, Eur. J. Clin. Microbiol. Infect. Dis., 2014, 33(7), 1189–1198. (PMID: 10.1007/s10096-014-2058-2)
F. C. Tenover, Mechanisms of antimicrobial resistance in bacteria, Am. J. Infect. Control, 2006, 34(5), S3–10.
S. Miquel, R. Lagrafeuille, B. Souweine and C. Forestier, Anti-biofilm Activity as a Health Issue, Front. Microbiol., 2016, 7, 1–14.
D. Lebeaux, J. M. Ghigo and C. Beloin, Biofilm-Related Infections: Bridging the Gap between Clinical Management and Fundamental Aspects of Recalcitrance toward Antibiotics, Microbiol. Mol. Biol. Rev., 2014, 78(3), 510–543. (PMID: 10.1128/MMBR.00013-14)
X. J. Fu, Y. Fang and M. Yao, Antimicrobial Photodynamic Therapy for Methicillin-Resistant Staphylococcus aureus Infection, BioMed Res. Int., 2013, 1–9.
F. Cieplik, L. Tabenski, W. Buchalla and T. Maisch, Antimicrobial photodynamic therapy for inactivation of biofilms formed by oral key pathogens, Front. Microbiol., 2014, 5, 1–17. (PMID: 10.3389/fmicb.2014.00405)
A. P. Castano, T. N. Demidova and M. R. Hamblin, Mechanisms in photodynamic therapy: part one—photo-sensitizers, photochemistry and cellular localization, Photodiagn. Photodyn. Ther., 2004, 1(4), 279–293. (PMID: 10.1016/S1572-1000(05)00007-4)
R. Yin, T. Agrawal, U. Khan, G. K. Gupta, V. Rai, Y. Y. Huang and M. R. Hamblin, Antimicrobial photodynamic inactivation in nanomedicine: small light strides against bad bugs, Nanomedicine, 2015, 10(15), 2379–2404. (PMID: 10.2217/nnm.15.67)
W. Zhang, Z. Zhang and Y. Zhang, The application of carbon nanotubes in target drug delivery systems for cancer therapies, Nanoscale Res. Lett., 2011, 6(1), 555.
T. Mocan, C. T. Matea, T. Pop, O. Mosteanu, A. D. Buzoianu, S. Suciu, C. Puia, C. Zdrehus, C. Iancu and L. Mocan, Carbon nanotubes as anti-bacterial agents, Cell. Mol. Life Sci., 2017, 74(19), 3467–3479. (PMID: 10.1007/s00018-017-2532-y)
U. Sah, K. Sharma, N. Chaudhri, M. Sankar and P. Gopinath, Antimicrobial photodynamic therapy: Single-walled carbon nanotube (SWCNT)-Porphyrin conjugate for visible light mediated inactivation of Staphylococcus aureus, Colloids Surf., B, 2018, 162, 108–117. (PMID: 10.1016/j.colsurfb.2017.11.046)
A. Sur, B. Pradhan, A. Banerjee and P. Aich, Immune activation efficacy of indolicidin is enhanced upon conjugation with carbon nanotubes and gold nanoparticles, PLoS One, 2015, 10(4), 1–15. (PMID: 10.1371/journal.pone.0123905)
B. P. De Oliveira, S. A. Lins CC dos, F. A. Diniz, L. L. Melo and Castro CMMB de, In Vitro antimicrobial photoinactivation with methylene blue in different microorganisms, Braz. J. Oral Sci., 2014, 13(1), 53–57. (PMID: 10.1590/1677-3225v13n1a11)
M. Usacheva, B. Layek, S. S. Rahman Nirzhor and S. Prabha, Nanoparticle-Mediated Photodynamic Therapy for Mixed Biofilms, J. Nanomater., 2016, 1–11.
J. K. Trigo Gutierrez, G. C. Zanatta, A. L. M. Ortega, M. I. C. Balastegui, P. V. Sanitá, A. C. Pavarina, P. A. Barbugli and E. Garcia de Oliveira Mima, Encapsulation of curcumin in polymeric nanoparticles for antimicrobial Photodynamic Therapy, PLoS One, 2017, 12(11), e0187418.
A. Shrestha and A. Kishen, Polycationic Chitosan-Conjugated Photosensitizer for Antibacterial Photodynamic Therapy, Photochem. Photobiol., 2012, 88(3), 577–583. (PMID: 10.1111/j.1751-1097.2011.01026.x)
S. Schastak, S. Ziganshyna, B. Gitter, P. Wiedemann and T. Claudepierre, Efficient Photodynamic Therapy against Gram-Positive and Gram-Negative Bacteria Using THPTS, a Cationic Photosensitizer Excited by Infrared Wavelength, PLoS One, 2010, 5(7), e11674.
A. S. Garcez, S. C. Nunez, M. S. Baptista, N. A. Daghastanli, R. Itri, M. R. Hamblin and M. S. Ribeiro, Antimicrobial mechanisms behind photodynamic effect in the presence of hydrogen peroxide, Photochem. Photobiol. Sci., 2011, 10(4), 483–490. (PMID: 10.1039/C0PP00082E)
S. Yu, X. Zhu and J. Zhou, Biofilm inhibition and pathogenicity attenuation in bacteria by Proteus mirabilis, R. Soc. Open Sci., 2018, 1–11.
M. C. Andrade, A. P. D. Ribeiro, L. N. Dovigo, I. L. Brunetti, E. T. Giampaolo, V. S. Bagnato and A. C. Pavarina, Effect of different pre-irradiation times on curcumin-mediated photodynamic therapy against planktonic cultures and biofilms of Candida spp, Arch. Oral Biol., 2013, 58(2), 200–210. (PMID: 10.1016/j.archoralbio.2012.10.011)
L. Misba, S. Zaidi and A. U. Khan, A comparison of antibacterial and antibiofilm efficacy of phenothiazinium dyes between Gram positive and Gram negative bacterial biofilm, Photodiagn. Photodyn. Ther., 2017, 18, 24–33. (PMID: 10.1016/j.pdpdt.2017.01.177)
G. A. Meerovich, I. G. Tiganova, E. A. Makarova, I. G. Meerovich, M. Romanova, E. R. Tolordova, N. V. Alekseeva, T. V. Stepanova, Y. Koloskova, E. A. Luk’anets, N. V. Krivospitskaya, I. P. Sipailo, T. V. Baikova, V. B. Loschenov and S. A. Gonchukov, Photodynamic inactivation of bacteria and biofilms using cationic bacteriochlorins, J. Phys.: Conf. Ser., 2016, 691(1), 012011.
H. Lee, D. Ryu, S. Choi and D. Lee, Antibacterial Activity of Silver-nanoparticles Against Staphylococcus aureus and Escherichia coli, Korean J. Microbiol. Biotechnol., 2011, 39(1), 77–85.
H. Sheng, K. Nakamura, T. Kanno, K. Sasaki and Y. Niwano, Bactericidal effect of photolysis of H2O2 in combination with sonolysis of water via hydroxyl radical generation, PLoS One, 2015, 10(7), e0132445.
L. Zhang, J. Gowardman, M. Morrison, N. Runnegar and C. M. Rickard, Microbial biofilms associated with intravascular catheter-related bloodstream infections in adult intensive care patients, Eur. J. Clin. Microbiol. Infect. Dis., 2016, 35(2), 201–205. (PMID: 10.1007/s10096-015-2530-7)
N. Kashef and M. R. Hamblin, Can microbial cells develop resistance to oxidative stress in antimicrobial photodynamic inactivation?, Drug Resist. Updates, 2017, 3, 31–42. (PMID: 10.1016/j.drup.2017.07.003)
M. A. Biel, C. Sievert, M. Usacheva, M. Teichert and J. Balcom, Antimicrobial photodynamic therapy treatment of chronic recurrent sinusitis biofilms, Int. Forum Allergy Rhinol., 2011, 1(5), 329–334. (PMID: 10.1002/alr.20089)
U. Sah, K. Sharma, N. Chaudhri, M. Sankar and P. Gopinath, Colloids and Surfaces B : Biointerfaces Antimicrobial photodynamic therapy : Single-walled carbon nanotube (SWCNT) -Porphyrin conjugate for visible light mediated inactivation of Staphylococcus aureus, Colloids Surf., B, 2018, 162, 108–117. (PMID: 10.1016/j.colsurfb.2017.11.046)
S. Khan, F. Alam, A. Azam and A. U. Khan, Gold nanoparticles enhance methylene blue-induced photodynamic therapy: a novel therapeutic approach to inhibit Candida albicans biofilm, Int. J. Nanomed., 2012, 3245–3257.
O. V. Ovchinnikov, A. V. Evtukhova, T. S. Kondratenko, M. S. Smirnov, V. Y. Khokhlov and O. V. Erina, Manifestation of intermolecular interactions in FTIR spectra of methylene blue molecules, Vib. Spectrosc., 2016, 86, 181–189. (PMID: 10.1016/j.vibspec.2016.06.016)
J. H. Lehman, M. Terrones, E. Mansfield, K. E. Hurst and V. Meunier, Evaluating the characteristics of multiwall carbon nanotubes, Carbon, 2011, 9(8), 2581–2602. (PMID: 10.1016/j.carbon.2011.03.028)
A. V. Borhade, D. R. Tope and B. K. Uphade, An Efficient Photocatalytic Degradation of Methyl Blue Dye by Using Synthesised PbO Nanoparticles, E. J. Chem., 2012, 9(2), 705–715. (PMID: 10.1155/2012/362680)
Y. Fang, T. Liu, Q. Zou, Y. Zhao and F. Wu, Water-soluble benzylidene cyclopentanone based photosensitizers for in vitro and in vivo antimicrobial photodynamic therapy, Sci. Rep., 2016, 6(1), 28357.
S. George, M. R. Hamblina and A. Kishen, Uptake pathways of anionic and cationic photosensitizers into bacteria, Photochem. Photobiol. Sci., 2009, 8(6), 788.
K. D. Wani, B. S. Kadu, P. Mansara, P. Gupta, A. V. Deore, R. C. Chikate, P. Poddar, S. D. Dhole and R. Kaul-Ghanekar, Synthesis, Characterization and In Vitro Study of Biocompatible Cinnamaldehyde Functionalized Magnetite Nanoparticles (CPGF Nps) For Hyperthermia and Drug Delivery Applications in Breast Cancer, PLoS One, 2014, 9(9), e107315.
A. Hanakova, K. Bogdanova, K. Tomankova, K. Pizova, J. Malohlava, S. Binder, R. Bajgara, K. Langovaa, M. Kolarb, J. Mosingerc and H. Kolarova, The application of antimicrobial photodynamic therapy on S. aureus and, E. coli using porphyrin photosensitizers bound to cyclodextrin, Microbiol. Res., 2014, 169(2–3), 163–170.
J. Wu, H. Xu, W. Tang, R. Kopelman, M. A. Philbert and C. Xi, Eradication of Bacteria in Suspension and Biofilms Using Methylene Blue-Loaded Dynamic Nanoplatforms, Antimicrob. Agents Chemother., 2009, 53(7), 3042–3048. (PMID: 10.1128/AAC.01604-08)
A. Gollmer, A. Felgentrager, W. Baumler, T. Maisch and A. Spath, A novel set of symmetric methylene blue derivatives exhibits effective bacteria photokilling – a structure–response study, Photochem. Photobiol. Sci., 2015, 14(2), 335–351. (PMID: 10.1039/C4PP00309H)
E. Darabpour, N. Kashef and S. Mashayekhan, Chitosan nanoparticles enhance the efficiency of methylene blue-mediated antimicrobial photodynamic inactivation of bacterial biofilms: An in vitro study, Photodiagn. Photodyn. Ther., 2016, 14, 211–217. (PMID: 10.1016/j.pdpdt.2016.04.009)
L. Misba, S. Zaidi and A. U. Khan, A comparison of antibacterial and antibiofilm efficacy of phenothiazinium dyes between Gram positive and Gram negative bacterial biofilm, Photodiagn. Photodyn. Ther., 2017, 18, 24–33. (PMID: 10.1016/j.pdpdt.2017.01.177)
A. Yoshida, H. Sasaki, T. Toyama, M. Araki, J. Fujioka, K. Tsukiyama, N. Hamada and F. Yoshino, Antimicrobial effect of blue light using Porphyromonas gingivalis pigment, Sci. Rep., 2017, 7(1), 5225.
A. Felgentrager, T. Maisch, D. Dobler and A. Spath, Hydrogen bond acceptors and additional cationic charges in methylene blue derivatives: Photophysics and antimicrobial efficiency, BioMed. Res. Int., 2013, 1–12.
M. Grinholc, J. Nakonieczna, G. Fila, A. Taraszkiewicz, A. Kawiak, G. Szewczyk, T. Sarna, L. Lilge and K. P. Bielawski, Antimicrobial photodynamic therapy with fulleropyrrolidine: photoinactivation mechanism of Staphylococcus aureus, in vitro and in vivo studies, Appl. Microbiol. Biotechnol., 2015, 99(9), 4031–4043. (PMID: 10.1007/s00253-015-6539-8)
المشرفين على المادة: 0 (Anti-Bacterial Agents)
0 (Nanotubes, Carbon)
0 (Reactive Oxygen Species)
T42P99266K (Methylene Blue)
تواريخ الأحداث: Date Created: 20190103 Date Completed: 20190314 Latest Revision: 20210607
رمز التحديث: 20231215
DOI: 10.1039/c8pp00369f
PMID: 30601523
قاعدة البيانات: MEDLINE
الوصف
تدمد:1474-9092
DOI:10.1039/c8pp00369f