دورية أكاديمية

An IRAK1-PIN1 signalling axis drives intrinsic tumour resistance to radiation therapy.

التفاصيل البيبلوغرافية
العنوان: An IRAK1-PIN1 signalling axis drives intrinsic tumour resistance to radiation therapy.
المؤلفون: Liu PH; Department of Medicine, Division of Hematology and Medical Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.; Department of Cell, Developmental and Regenerative Biology, The Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA., Shah RB; Department of Medicine, Division of Hematology and Medical Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.; Department of Cell, Developmental and Regenerative Biology, The Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA., Li Y; Department of Medicine, Division of Hematology and Medical Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.; Department of Cell, Developmental and Regenerative Biology, The Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA., Arora A; Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA., Ung PM; Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA., Raman R; Department of Medicine, Division of Hematology and Medical Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.; Department of Cell, Developmental and Regenerative Biology, The Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA., Gorbatenko A; Department of Pathology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA., Kozono S; Cancer Biology Program, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA., Zhou XZ; Cancer Biology Program, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA., Brechin V; Department of Medicine, Division of Hematology and Medical Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.; Department of Cell, Developmental and Regenerative Biology, The Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.; Institute of Molecular and Cellular Biosciences, The University of Tokyo, Tokyo, Japan., Barbaro JM; Department of Medicine, Division of Hematology and Medical Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.; Department of Cell, Developmental and Regenerative Biology, The Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.; Albert Einstein College of Medicine, Bronx, NY, USA., Thompson R; Department of Medicine, Division of Hematology and Medical Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.; Department of Cell, Developmental and Regenerative Biology, The Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.; Department of Oncology and Metabolism, The University of Sheffield, Sheffield, UK., White RM; Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, NY, USA., Aguirre-Ghiso JA; Department of Medicine, Division of Hematology and Medical Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA., Heymach JV; Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA., Lu KP; Cancer Biology Program, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA., Silva JM; Department of Pathology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA., Panageas KS; Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA., Schlessinger A; Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA., Maki RG; Department of Medicine, Division of Hematology and Medical Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.; Department of Cell, Developmental and Regenerative Biology, The Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.; Hofstra-Northwell School of Medicine and Cold Spring Harbor Laboratory, Hempstead, NY, USA., Skinner HD; Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA., de Stanchina E; Antitumor Assessment Core and Molecular Pharmacology Department, Memorial Sloan Kettering Cancer Center, New York, NY, USA., Sidi S; Department of Medicine, Division of Hematology and Medical Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA. samuel.sidi@mssm.edu.; Department of Cell, Developmental and Regenerative Biology, The Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA. samuel.sidi@mssm.edu.
المصدر: Nature cell biology [Nat Cell Biol] 2019 Feb; Vol. 21 (2), pp. 203-213. Date of Electronic Publication: 2019 Jan 21.
نوع المنشور: Journal Article; Research Support, N.I.H., Extramural; Research Support, Non-U.S. Gov't
اللغة: English
بيانات الدورية: Publisher: Macmillan Magazines Ltd Country of Publication: England NLM ID: 100890575 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1476-4679 (Electronic) Linking ISSN: 14657392 NLM ISO Abbreviation: Nat Cell Biol Subsets: MEDLINE
أسماء مطبوعة: Original Publication: London : Macmillan Magazines Ltd., [1999-
مواضيع طبية MeSH: Signal Transduction*, Interleukin-1 Receptor-Associated Kinases/*metabolism , NIMA-Interacting Peptidylprolyl Isomerase/*metabolism , Neoplasms/*radiotherapy , Xenograft Model Antitumor Assays/*methods, Animals ; Cell Line, Tumor ; HCT116 Cells ; HEK293 Cells ; HeLa Cells ; Humans ; Interleukin-1 Receptor-Associated Kinases/antagonists & inhibitors ; Interleukin-1 Receptor-Associated Kinases/genetics ; MCF-7 Cells ; Mice, Inbred NOD ; Mice, Knockout ; Mice, SCID ; Mutation ; NIMA-Interacting Peptidylprolyl Isomerase/antagonists & inhibitors ; NIMA-Interacting Peptidylprolyl Isomerase/genetics ; Neoplasms/genetics ; Neoplasms/metabolism ; Radiation Tolerance/drug effects ; Radiation Tolerance/genetics ; Tumor Suppressor Protein p53/genetics ; Zebrafish
مستخلص: Drug-based strategies to overcome tumour resistance to radiotherapy (R-RT) remain limited by the single-agent toxicity of traditional radiosensitizers (for example, platinums) and a lack of targeted alternatives. In a screen for compounds that restore radiosensitivity in p53 mutant zebrafish while tolerated in non-irradiated wild-type animals, we identified the benzimidazole anthelmintic oxfendazole. Surprisingly, oxfendazole acts via the inhibition of IRAK1, a kinase thus far implicated in interleukin-1 receptor (IL-1R) and Toll-like receptor (TLR) immune responses. IRAK1 drives R-RT in a pathway involving IRAK4 and TRAF6 but not the IL-1R/TLR-IRAK adaptor MyD88. Rather than stimulating nuclear factor-κB, radiation-activated IRAK1 prevented apoptosis mediated by the PIDDosome complex (comprising PIDD, RAIDD and caspase-2). Countering this pathway with IRAK1 inhibitors suppressed R-RT in tumour models derived from cancers in which TP53 mutations predict R-RT. Moreover, IRAK1 inhibitors synergized with inhibitors of PIN1, a prolyl isomerase essential for IRAK1 activation in response to pathogens and, as shown here, in response to ionizing radiation. These data identify an IRAK1 radiation-response pathway as a rational chemoradiation therapy target.
References: Lawrence, Y. R. et al. NCI-RTOG translational program strategic guidelines for the early-stage development of radiosensitizers. J. Natl Cancer Inst. 105, 11–24 (2013). (PMID: 10.1093/jnci/djs472)
Sharma, R. A. et al. Clinical development of new drug–radiotherapy combinations. Nat. Rev. Clin. Oncol. 13, 627–642 (2016). (PMID: 10.1038/nrclinonc.2016.79)
Wilson, G. D., Bentzen, S. M. & Harari, P. M. Biologic basis for combining drugs with radiation. Semin. Radiat. Oncol. 16, 2–9 (2006). (PMID: 10.1016/j.semradonc.2005.08.001)
Golden, E. B., Formenti, S. C. & Schiff, P. B. Taxanes as radiosensitizers. Anticancer Drugs 25, 502–511 (2014). (PMID: 10.1097/CAD.0000000000000055)
Adelstein, D. J. et al. An intergroup phase III comparison of standard radiation therapy and two schedules of concurrent chemoradiotherapy in patients with unresectable squamous cell head and neck cancer. J. Clin. Oncol. 21, 92–98 (2003). (PMID: 10.1200/JCO.2003.01.008)
Olivier, M. et al. The IARC TP53 database: new online mutation analysis and recommendations to users. Hum. Mutat. 19, 607–614 (2002). (PMID: 10.1002/humu.10081)
Igney, F. H. & Krammer, P. H. Death and anti-death: tumour resistance to apoptosis. Nat. Rev. Cancer 2, 277–288 (2002). (PMID: 10.1038/nrc776)
Vogelstein, B., Lane, D. & Levine, A. J. Surfing the p53 network. Nature 408, 307–310 (2000). (PMID: 10.1038/35042675)
Vousden, K. H. & Lu, X. Live or let die: the cell’s response to p53. Nat. Rev. Cancer 2, 594–604 (2002). (PMID: 10.1038/nrc864)
Poeta, M. L. et al. TP53 mutations and survival in squamous-cell carcinoma of the head and neck. N. Engl. J. Med. 357, 2552–2561 (2007). (PMID: 10.1056/NEJMoa073770)
Skinner, H. D. et al. TP53 disruptive mutations lead to head and neck cancer treatment failure through inhibition of radiation-induced senescence. Clin. Cancer Res. 18, 290–300 (2012). (PMID: 10.1158/1078-0432.CCR-11-2260)
Nam, T. K. et al. Molecular prognostic factors in rectal cancer treated by preoperative chemoradiotherapy. Oncol. Lett. 1, 23–29 (2010). (PMID: 10.3892/ol_00000004)
Sclafani, F.et al. TP53 mutational status and cetuximab benefit in rectal cancer: 5-year results of the EXPERT-C trial. J. Natl Cancer Inst. 106, dju121 (2014).
Eikesdal, H. P., Knappskog, S., Aas, T. & Lonning, P. E. TP53 status predicts long-term survival in locally advanced breast cancer after primary chemotherapy. Acta Oncol. 53, 1347–1355 (2014). (PMID: 10.3109/0284186X.2014.922215)
Li, S., Zhang, W., Chen, B., Jiang, T. & Wang, Z. Prognostic and predictive value of p53 in low MGMT expressing glioblastoma treated with surgery, radiation and adjuvant temozolomide chemotherapy. Neurol. Res. 32, 690–694 (2010). (PMID: 10.1179/016164109X12478302362536)
Tabori, U. et al. Universal poor survival in children with medulloblastoma harboring somatic TP53 mutations. J. Clin. Oncol. 28, 1345–1350 (2010). (PMID: 10.1200/JCO.2009.23.5952)
Berghmans, S. et al. tp53 mutant zebrafish develop malignant peripheral nerve sheath tumors. Proc. Natl Acad. Sci. USA 102, 407–412 (2005). (PMID: 10.1073/pnas.0406252102)
Sidi, S. et al. Chk1 suppresses a caspase-2 apoptotic response to DNA damage that bypasses p53, Bcl-2, and caspase-3. Cell 133, 864–877 (2008). (PMID: 10.1016/j.cell.2008.03.037)
McAleer, M. F. et al. Novel use of zebrafish as a vertebrate model to screen radiation protectors and sensitizers. Int. J. Radiat. Oncol. Biol. Phys. 61, 10–13 (2005). (PMID: 10.1016/j.ijrobp.2004.09.046)
Lacey, E. Mode of action of benzimidazoles. Parasitol. Today 6, 112–115 (1990). (PMID: 10.1016/0169-4758(90)90227-U)
Prichard, R. K. & Ranjan, S. Anthelmintics. Vet. Parasitol. 46, 113–120 (1993). (PMID: 10.1016/0304-4017(93)90052-O)
Keiser, M. J. et al. Relating protein pharmacology by ligand chemistry. Nat. Biotechnol. 25, 197–206 (2007). (PMID: 10.1038/nbt1284)
Jain, A., Kaczanowska, S. & Davila, E. IL-1 receptor-associated kinase signaling and its role in inflammation, cancer progression, and therapy resistance. Front. Immunol. 5, 553 (2014). (PMID: 10.3389/fimmu.2014.00553)
Janssens, S. & Beyaert, R. Functional diversity and regulation of different interleukin-1 receptor-associated kinase (IRAK) family members. Mol. Cell 11, 293–302 (2003). (PMID: 10.1016/S1097-2765(03)00053-4)
Powers, J. P. et al. Discovery and initial SAR of inhibitors of interleukin-1 receptor-associated kinase-4. Bioorg. Med. Chem. Lett. 16, 2842–2845 (2006). (PMID: 10.1016/j.bmcl.2006.03.020)
Wang, Z. et al. Crystal structures of IRAK-4 kinase in complex with inhibitors: a serine/threonine kinase with tyrosine as a gatekeeper. Structure 14, 1835–1844 (2006). (PMID: 10.1016/j.str.2006.11.001)
O’Neill, L. A., Golenbock, D. & Bowie, A. G. The history of Toll-like receptors—redefining innate immunity. Nat. Rev. Immunol. 13, 453–460 (2013). (PMID: 10.1038/nri3446)
Rolf, M. G. et al. In vitro pharmacological profiling of R406 identifies molecular targets underlying the clinical effects of fostamatinib. Pharmacol. Res. Perspect. 3, e00175 (2015). (PMID: 10.1002/prp2.175)
Joh, E. H., Lee, I. A., Jung, I. H. & Kim, D. H. Ginsenoside Rb1 and its metabolite compound K inhibit IRAK-1 activation–the key step of inflammation. Biochem. Pharmacol. 82, 278–286 (2011). (PMID: 10.1016/j.bcp.2011.05.003)
Yao, J. et al. Interleukin-1 (IL-1)-induced TAK1-dependent versus MEKK3-dependent NFkappaB activation pathways bifurcate at IL-1 receptor-associated kinase modification. J. Biol. Chem. 282, 6075–6089 (2007). (PMID: 10.1074/jbc.M609039200)
Kollewe, C. et al. Sequential autophosphorylation steps in the interleukin-1 receptor-associated kinase-1 regulate its availability as an adapter in interleukin-1 signaling. J. Biol. Chem. 279, 5227–5236 (2004). (PMID: 10.1074/jbc.M309251200)
Wee, Z. N. et al. IRAK1 is a therapeutic target that drives breast cancer metastasis and resistance to paclitaxel. Nat. Commun. 6, 8746 (2015). (PMID: 10.1038/ncomms9746)
Muroi, M. & Tanamoto, K. IRAK-1-mediated negative regulation of Toll-like receptor signaling through proteasome-dependent downregulation of TRAF6. Biochim. Biophys. Acta 1823, 255–263 (2012). (PMID: 10.1016/j.bbamcr.2011.10.003)
Rhyasen, G. W. & Starczynowski, D. T. IRAK signalling in cancer. Br. J. Cancer 112, 232–237 (2015). (PMID: 10.1038/bjc.2014.513)
Conze, D. B., Wu, C. J., Thomas, J. A., Landstrom, A. & Ashwell, J. D. Lys63-linked polyubiquitination of IRAK-1 is required for interleukin-1 receptor- and toll-like receptor-mediated NF-kappaB activation. Mol. Cell. Biol. 28, 3538–3547 (2008). (PMID: 10.1128/MCB.02098-07)
Ando, K. et al. PIDD death-domain phosphorylation by ATM controls prodeath versus prosurvival PIDDosome signaling. Mol. Cell 47, 681–693 (2012). (PMID: 10.1016/j.molcel.2012.06.024)
Sladky, V., Schuler, F., Fava, L. L. & Villunger, A. The resurrection of the PIDDosome—emerging roles in the DNA-damage response and centrosome surveillance. J. Cell Sci. 130, 3779–3787 (2017). (PMID: 10.1242/jcs.203448)
Tinel, A. & Tschopp, J. The PIDDosome, a protein complex implicated in activation of caspase-2 in response to genotoxic stress. Science 304, 843–846 (2004). (PMID: 10.1126/science.1095432)
Tinel, A. et al. Autoproteolysis of PIDD marks the bifurcation between pro-death caspase-2 and pro-survival NF-kappaB pathway. EMBO J. 26, 197–208 (2007). (PMID: 10.1038/sj.emboj.7601473)
Barretina, J. et al. The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity. Nature 483, 603–607 (2012). (PMID: 10.1038/nature11003)
Essmann, F., Engels, I. H., Totzke, G., Schulze-Osthoff, K. & Janicke, R. U. Apoptosis resistance of MCF-7 breast carcinoma cells to ionizing radiation is independent of p53 and cell cycle control but caused by the lack of caspase-3 and a caffeine-inhibitable event. Cancer Res. 64, 7065–7072 (2004). (PMID: 10.1158/0008-5472.CAN-04-1082)
Lu, Z. & Hunter, T. Prolyl isomerase Pin1 in cancer. Cell Res. 24, 1033–1049 (2014). (PMID: 10.1038/cr.2014.109)
Wei, S. et al. Active Pin1 is a key target of all-trans retinoic acid in acute promyelocytic leukemia and breast cancer. Nat. Med. 21, 457–466 (2015). (PMID: 10.1038/nm.3839)
Skinner, H. D. et al. Proteomic profiling identifies PTK2/FAK as a driver of radioresistance in HPV-negative head and neck cancer. Clin. Cancer Res. 22, 4643–4650 (2016). (PMID: 10.1158/1078-0432.CCR-15-2785)
Cancer Genome Atlas Network Comprehensive genomic characterization of head and neck squamous cell carcinomas. Nature 517, 576–582 (2015). (PMID: 10.1038/nature14129)
Tun-Kyi, A. et al. Essential role for the prolyl isomerase Pin1 in Toll-like receptor signaling and type I interferon-mediated immunity. Nat. Immunol. 12, 733–741 (2011). (PMID: 10.1038/ni.2069)
Moore, J. D. & Potter, A. Pin1 inhibitors: pitfalls, progress and cellular pharmacology. Bioorg. Med. Chem. Lett. 23, 4283–4291 (2013). (PMID: 10.1016/j.bmcl.2013.05.088)
Urusova, D. V. et al. Epigallocatechin-gallate suppresses tumorigenesis by directly targeting Pin1. Cancer Prev. Res. (Phila.) 4, 1366–1377 (2011). (PMID: 10.1158/1940-6207.CAPR-11-0301)
Marsolier, J. et al. Theileria parasites secrete a prolyl isomerase to maintain host leukocyte transformation. Nature 520, 378–382 (2015). (PMID: 10.1038/nature14044)
Candeias, S. M. & Testard, I. The many interactions between the innate immune system and the response to radiation. Cancer Lett. 368, 173–178 (2015). (PMID: 10.1016/j.canlet.2015.02.007)
Reisz, J. A., Bansal, N., Qian, J., Zhao, W. & Furdui, C. M. Effects of ionizing radiation on biological molecules–mechanisms of damage and emerging methods of detection. Antioxid. Redox. Signal. 21, 260–292 (2014). (PMID: 10.1089/ars.2013.5489)
Thomas, J. A. et al. Impaired cytokine signaling in mice lacking the IL-1 receptor-associated kinase. J. Immunol. 163, 978–984 (1999). (PMID: 10395695)
Liou, Y. C. et al. Role of the prolyl isomerase Pin1 in protecting against age-dependent neurodegeneration. Nature 424, 556–561 (2003). (PMID: 10.1038/nature01832)
Girardini, J. E. et al. A Pin1/mutant p53 axis promotes aggressiveness in breast cancer. Cancer Cell 20, 79–91 (2011). (PMID: 10.1016/j.ccr.2011.06.004)
Anderson, J. R., Cain, K. C. & Gelber, R. D. Analysis of survival by tumor response. J. Clin. Oncol. 1, 710–719 (1983). (PMID: 10.1200/JCO.1983.1.11.710)
Braselmann, S. et al. R406, an orally available spleen tyrosine kinase inhibitor blocks Fc receptor signaling and reduces immune complex-mediated inflammation. J. Pharmacol. Exp. Ther. 319, 998–1008 (2006). (PMID: 10.1124/jpet.106.109058)
Fujiki, H. et al. Anticarcinogenic effects of (–)-epigallocatechin gallate. Prev. Med. 21, 503–509 (1992). (PMID: 10.1016/0091-7435(92)90057-O)
Notredame, C., Higgins, D. G. & Heringa, J. T-Coffee: a novel method for fast and accurate multiple sequence alignment. J. Mol. Biol. 302, 205–217 (2000). (PMID: 10.1006/jmbi.2000.4042)
Sali, A. & Blundell, T. L. Comparative protein modelling by satisfaction of spatial restraints. J. Mol. Biol. 234, 779–815 (1993). (PMID: 10.1006/jmbi.1993.1626)
Eramian, D., Eswar, N., Shen, M. Y. & Sali, A. How well can the accuracy of comparative protein structure models be predicted? Protein Sci. 17, 1881–1893 (2008). (PMID: 10.1110/ps.036061.108)
Ung, P. M. & Schlessinger, A. DFGmodel: predicting protein kinase structures in inactive states for structure-based discovery of type-II inhibitors. ACS Chem. Biol. 10, 269–278 (2015). (PMID: 10.1021/cb500696t)
Sherman, W., Day, T., Jacobson, M. P., Friesner, R. A. & Farid, R. Novel procedure for modeling ligand/receptor induced fit effects. J. Med. Chem. 49, 534–553 (2006). (PMID: 10.1021/jm050540c)
Ye, H. et al. Distinct molecular mechanism for initiating TRAF6 signalling. Nature 418, 443–447 (2002). (PMID: 10.1038/nature00888)
Langheinrich, U., Hennen, E., Stott, G. & Vacun, G. Zebrafish as a model organism for the identification and characterization of drugs and genes affecting p53 signaling. Curr. Biol. 12, 2023–2028 (2002). (PMID: 10.1016/S0960-9822(02)01319-2)
Thompson, R. et al. An inhibitor of PIDDosome formation. Mol. Cell 58, 767–779 (2015). (PMID: 10.1016/j.molcel.2015.03.034)
Wei, S. et al. Active Pin1 is a key target of all-trans retinoic acid in acute promyelocytic leukemia and breast cancer. Nat. Med. 21, 457–466 (2015). (PMID: 10.1038/nm.3839)
Yaffe, M. B. et al. Sequence-specific and phosphorylation-dependent proline isomerization: a potential mitotic regulatory mechanism. Science 278, 1957–1960 (1997). (PMID: 10.1126/science.278.5345.1957)
Niesen, F. H., Berglund, H. & Vedadi, M. The use of differential scanning fluorimetry to detect ligand interactions that promote protein stability. Nat. Protoc. 2, 2212–2221 (2007). (PMID: 10.1038/nprot.2007.321)
Chou, T. C. Theoretical basis, experimental design, and computerized simulation of synergism and antagonism in drug combination studies. Pharmacol. Rev. 58, 621–681 (2006). (PMID: 10.1124/pr.58.3.10)
Kawata, M. et al. Additive effect of radiosensitization by 2-deoxy-D-glucose delays DNA repair kinetics and suppresses cell proliferation in oral squamous cell carcinoma. J. Oral Pathol. Med. 46, 979–985 (2017). (PMID: 28640935)
معلومات مُعتمدة: U54 OD020355 United States OD NIH HHS; F30 CA186448 United States CA NCI NIH HHS; P30 CA008748 United States CA NCI NIH HHS; R01 CA168485 United States CA NCI NIH HHS; R01 GM135301 United States GM NIGMS NIH HHS; R01 CA178162 United States CA NCI NIH HHS
المشرفين على المادة: 0 (NIMA-Interacting Peptidylprolyl Isomerase)
0 (Tumor Suppressor Protein p53)
EC 2.7.11.1 (IRAK1 protein, human)
EC 2.7.11.1 (Interleukin-1 Receptor-Associated Kinases)
تواريخ الأحداث: Date Created: 20190122 Date Completed: 20190415 Latest Revision: 20210203
رمز التحديث: 20221213
مُعرف محوري في PubMed: PMC6428421
DOI: 10.1038/s41556-018-0260-7
PMID: 30664786
قاعدة البيانات: MEDLINE
الوصف
تدمد:1476-4679
DOI:10.1038/s41556-018-0260-7