دورية أكاديمية

Genetically informed captive breeding of hybrids of an extinct species of Galapagos tortoise.

التفاصيل البيبلوغرافية
العنوان: Genetically informed captive breeding of hybrids of an extinct species of Galapagos tortoise.
المؤلفون: Quinzin MC; Department of Ecology and Evolutionary Biology, Yale University, 21 Sachem Street, New Haven, CT, 06520, U.S.A., Sandoval-Castillo J; Molecular Ecology Lab, College of Science and Engineering, Flinders University, Adelaide, SA, 5001, Australia., Miller JM; Department of Ecology and Evolutionary Biology, Yale University, 21 Sachem Street, New Haven, CT, 06520, U.S.A., Beheregaray LB; Molecular Ecology Lab, College of Science and Engineering, Flinders University, Adelaide, SA, 5001, Australia., Russello MA; Department of Biology, University of British Columbia, Okanagan Campus, Kelowna, BC, V1V 1V7, Canada., Hunter EA; Department of Biology, Georgia Southern University, Statesboro, GA, 30460, U.S.A., Gibbs JP; Department of Environmental and Forest Biology, College of Environmental Science and Forestry, State University of New York, 247 Illick Hall, Syracuse, NY, 13210, U.S.A., Tapia W; Giant Tortoise Restoration Initiative, Galapagos Conservancy, Fairfax, VA, 22030, U.S.A., Villalva F; Galapagos National Park Directorate, Puerto Ayora, Galapagos, Ecuador., Caccone A; Department of Ecology and Evolutionary Biology, Yale University, 21 Sachem Street, New Haven, CT, 06520, U.S.A.
المصدر: Conservation biology : the journal of the Society for Conservation Biology [Conserv Biol] 2019 Dec; Vol. 33 (6), pp. 1404-1414. Date of Electronic Publication: 2019 Jun 06.
نوع المنشور: Journal Article; Research Support, Non-U.S. Gov't; Research Support, U.S. Gov't, Non-P.H.S.
اللغة: English
بيانات الدورية: Publisher: Blackwell Publishing, Inc. on behalf of the Society for Conservation Biology Country of Publication: United States NLM ID: 9882301 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1523-1739 (Electronic) Linking ISSN: 08888892 NLM ISO Abbreviation: Conserv Biol Subsets: MEDLINE
أسماء مطبوعة: Publication: Malden, MA : Blackwell Publishing, Inc. on behalf of the Society for Conservation Biology
Original Publication: Boston, Mass. : Blackwell Scientific Publications,
مواضيع طبية MeSH: Turtles*, Animals ; Breeding ; Conservation of Natural Resources ; Ecosystem ; Islands
مستخلص: Hybridization poses a major challenge for species conservation because it threatens both genetic integrity and adaptive potential. Yet, hybridization can occasionally offer unprecedented opportunity for species recovery if the genome of an extinct taxon is present among living hybrids such that selective breeding could recapture it. We explored the design elements for establishing a captive-breeding program for Galapagos tortoises (Chelonoidis spp.) built around individuals with admixed ancestry involving an extinct species. The target individuals were hybrids between the extinct species from Floreana Island, C. niger, and an extant species, C. becki, which were recently found in the endemic range of C. becki, from Wolf Volcano on Isabela Island. We combined genotypic data from 35 tortoises with high ancestry from C. niger with forward-in-time simulations to explore captive breeding strategies that maximized overall genetic diversity and ancestry from C. niger while accommodating resource constraints, species biology, and the urgency to return tortoises to Floreana Island for facilitating ecosystem restoration. Overall genetic diversity was maximized when in the simulation tortoises were organized in relatively small breeding groups. Substantial amounts of the C. niger genome were captured despite limited resources available for selectively breeding tortoises in captivity. Genetic diversity was maximized when captive-bred offspring were released to the wild rather than being used as additional breeders. Our results provide genetic-based and practical guidance on the inclusion of hybrids with genomic representation from extinct taxa into species restoration programs and informs the ongoing debate on the value of hybrids in biodiversity conservation.
(© 2019 Society for Conservation Biology.)
References: Asa CS, Traylor-Holzer K, Lacy RC. 2011. Can conservation-breeding programmes be improved by incorporating mate choice? International Zoo Yearbook 45:203-212.
Attard CRM, Möller LM, Sasaki M, Hammer MP, Bice CM, Brauer CJ, Carvalho DC, Harris JO, Beheregaray LB. 2016. A novel holistic framework for genetic-based captive-breeding and reintroduction programs. Conservation Biology 30:1060-1069.
Ballou JD, Gilpin ME. 1995. Population management for survival and recovery: analytical methods and strategies in small population conservation. Columbia University Press, New York.
Beheregaray LB, Havill N, Gibbs J, Fritts T, Powell JR, Caccone G. 2004. Giant tortoises are not so slow: rapid diversification and biogeographic consensus in the Galápagos. Proceedings of the National Academy of Sciences USA 101:6514-6519.
Blake S, Wikelski M, Cabrera F, Guezou A, Silva M, Sadeghayobi E, Yackulic CB, Jaramillo P. 2012. Seed dispersal by Galápagos tortoises. Journal of Biogeography 39:1961-1972.
Ceballos G, Ehrlich PR, Barnosky AD, García A, Pringle RM, Palmer TM. 2015. Accelerated modern human-induced species losses: entering the sixth mass extinction. Science Advances 1:e1400253.
Fienieg ES, Galbusera P. 2013. The use and integration of molecular DNA information in conservation breeding programmes: a review. Journal of Zoo Aquarium Resources 1:44-51.
Fischer J, Lindenmayer DB. 2000. An assessment of the published results of animal relocations. Biological Conservation 96:1-11.
Fitzsimmons NN, Buchan JC, Lam PV, Polet G, Hung TT, Thang NQ, Gratten J. 2002. Identification of purebred Crocodylus siamensis for reintroduction in Vietnam. Journal of Experimental Zoology 294:373-381.
Fritts TH. 1984. Evolutionary divergence of giant tortoises in Galápagos. Biological Journal of the Linnean Society 21:165-176.
Garnett ST, Olsen P, Butchart SH, Hoffmann AA. 2011. Did hybridization save the Norfolk Island boobook owl Ninox novaeseelandiae undulata? Oryx 45:500-504.
Garrick RC, et al. 2012. Genetic rediscovery of an “extinct” Galapagos giant tortoise species. Current Biology 22:R10-R11.
Gibbs JP, Sterling EJ, Zabala FJ. 2010. Giant tortoises as ecological engineers: a long-term quasi-experiment in the Galápagos Islands. Biotropica 42:208-214.
Harper GA, Carrion V. 2011. Introduced rodents in the Galapagos: colonisation, removal and the future. Pages 63-66 in Veitch CR, Clout MN, Towns DR, editors. Island invasives: eradication and management. International Union for Conservation of Nature, Gland, Switzerland.
Hofman CA, Rick TC, Fleischer RC, Maldonado JE. 2015. Conservation archaeogenomics: ancient DNA and biodiversity in the Anthropocene. Trends in Ecology & Evolution 30:540-549.
IUCN (International Union for Conservation of Nature). 2016. IUCN red list of threatened species. Version 2016-2. IUCN, Gland, Switzerland. Available from www.iucnredlist.org (accessed November 2016).
Jackiw RN, Mandil G, Hager HA. 2015. A framework to guide the conservation of species hybrids based on ethical and ecological considerations. Conservation Biology 29:1040-1051.
Johnson KM, Germain RR, Tarwater CE, Reid JM, Arcese P. 2018. Demographic consequences of invasion by a native, controphic competitor to an insular bird population. Oecologia 187:155-165.
Lande R, Barrowclough GF. 1987. Effective population size, genetic variation, and their use in population management. Pages 87-124 in Soulé ME, editor. Viable populations for conservation. Cambridge University Press, New York.
Marker-Kraus L, Grisham J. 1993. Captive breeding of cheetahs in North American zoos: 1987-1991. Zoo Biology 12:5-18.
Marquez C, Morillo G, Cayot LJ. 1991. A 25-year management program pays off: repatriated tortoises on Espanola reproduce. Noticias de Galapagos 50:17-18.
Meyerson LA, Mooney HA. 2007. Invasive alien species in an era of globalization. Frontiers in Ecology and the Environment 5:199-208.
Milinkovitch MC, Monteyne D, Russello M, Gibbs JP, Snell HL, Tapia W, Marquez C, Caccone A, Powell JR. 2007. Giant Galápagos tortoises; molecular genetic analyses identify a trans-island hybrid in a repatriation program of an endangered taxon. BMC Ecology 7:2.
Miller JM, et al. 2017. Identification of genetically important individuals of the rediscovered Floreana Galápagos giant tortoise (Chelonoidis elephantopus) provide founders for Species Restoration Program. Scientific Reports 7:11471.
Miller JM, Quinzin MC, Scheibe EH, Ciofi C, Villalva F, Tapia W, Caccone A. 2018. Genetic pedigree analysis of the pilot breeding program for the rediscovered Galapagos giant tortoise from Floreana Island. Journal of Heredity 109:620-630.
Perrings C, Dehnen-Schmutz K, Touza J, Williamson M. 2005. How to manage biological invasions under globalization. Trends in Ecology & Evolution 20:212-215.
Piett S, Hager HA, Gerrard C. 2015. Characteristics for evaluating the conservation value of species hybrids. Biodiversity Conservation 24:1931-1955.
Poulakakis N, Glaberman S, Russello M, Beheregaray LB, Ciofi C, Powell JR, Caccone A. 2008. Historical DNA analysis reveals living descendants of an extinct species of Galapagos tortoise. Proceedings of the National Academy of Sciences USA 105:15464-15469.
Queller DC, Goodnight KF. 1989. Estimating relatedness using genetic markers. Evolution 43:258-275.
Rhodin AGJ, Iverson JB, Bour R, Fritz U, Georges A, Shaffer HB, van Dijk PP. 2017. Turtles of the world: annotated checklist and atlas of taxonomy, synonymy, distribution, and conservation status (8th Ed.). Chelonian Research Monographs 7:1-291.
Rhymer JM, Simberloff D. 1996. Extinction by hybridization and introgression. Annual Review of Ecology and Systematics 27:83-109.
Robert A. 2009. Captive breeding genetics and reintroduction success. Biological Conservation 142:2915-2922.
Russello MA, Beheregaray LB, Gibbs JP, Fritts T, Havill N, Powell JR, Caccone A. 2007. Lonesome George is not alone among Galápagos tortoises. Current Biology 17:R317-R318.
Russello MA, Poulakakis N, Gibbs JP, Tapia W, Benavides E, Powell JR, Caccone A. 2010. DNA from the past informs ex situ conservation for the future: an “extinct” species of Galapagos Tortoise Identified in Captivity. PLOS ONE 5 (e8683) https://doi.org/10.1371/journal.pone.0008683.
Russello MA, E. Jensen. 2018. Ex situ wildlife conservation in the age of population genomics. Pages 1-20 in Hohenlohe P, Rajora O, editors. Population genomics: wildlife. Springer, Berlin, Germany.
Sandoval-Castillo J, Attard CRM, Marri A, Brauer CJ, Möller LM, Beheregaray LB. 2017. SWINGER: a user-friendly computer program to establish captive breeding groups that minimize relatedness without pedigree information. Molecular Ecology Resources 17:278-287.
Seddon PJ, Armstrong DP, Maloney RF. 2007. Developing the science of reintroduction biology. Conservation Biology 21:303-312.
Shapiro B, Hofreiter M. 2014. A paleogenomic perspective on evolution and gene function: new insights from ancient DNA. Science 343:1236573.
Soorae PS, editor. 2013. Global re-introduction perspectives: 2013. Further case studies from around the globe. IUCN, Gland, Switzerland.
Stelkens RB, Brockhurst MA, Hurst GDD, Greig D. 2014. Hybridization facilitates evolutionary rescue. Evolutionary Applications 7:1209-1217.
Todesco M, et al. 2016. Hybridization and extinction. Evolutionary Applications 9:892-908.
Tokarska M, Pertoldi C, Kowalczyk R, Perzanowski K. 2011. Genetic status of the European bison Bison bonasus after extinction in the wild and subsequent recovery. Mammal Review 41:151-162.
Townsend. 1925. The Galapagos Tortoises in their relation to the whaling industry. Zoologica 4:55-135.
van Dijk PP, Rhodin AGJ, Cayot LJ, Caccone A. 2017. Chelonoidis niger. The IUCN red list of threatened species. IUCN, Gland, Switzerland.
Wayne RK, Shaffer HB. 2016. Hybridization and endangered species protection in the molecular era. Molecular Ecology 25:2680-2689.
Williams SE, Hoffman EA. 2009. Minimizing genetic adaptation in captive breeding programs: a review. Biological Conservation 142:2388-2400.
Willoughby JR, Fernandez NB, Lamb MC, Ivy JA, Lacy RC, DeWoody JA. 2015. The impacts of inbreeding, drift and selection on genetic diversity in captive breeding populations. Molecular Ecology 24:98-110.
Witzenberger KA, Hochkirch A. 2011. Ex situ conservation genetics: a review of molecular studies on the genetic consequences of captive breeding programmes for endangered animal species. Biodiversity Conservation 20:1843-1861.
فهرسة مساهمة: Keywords: Chelonoidis niger; Chlenoidis niger; Floreana Island; Isla Floreana; ex situ population management; forward-in-time simulations; genetic ancestry; genetic relatedness; hybrid conservation value; linaje genético; manejo poblacional ex situ; muestras de museos; museum samples; relación genética; simulación futura; valor de conservación de híbridos; 前进式模拟; 博物馆标本; 弗洛里安娜岛; 杂种保护价值; 迁地种群管理; 遗传相关性; 遗传血统
Local Abstract: [Publisher, Spanish; Castilian] Reproducción en Cautiverio Informada Genéticamente de Híbridos de una Especie Extinta de Tortuga de las Galápagos Resumen La hibridación representa un obstáculo importante para la conservación de especies ya que amenaza tanto a la integridad genética como al potencial adaptativo. Aun así, la hibridación ocasionalmente puede ofrecer una oportunidad sin precedentes para la recuperación de una especie si el genoma de un taxón extinto está presente entre los híbridos vivientes de tal manera que la reproducción selectiva pudiera recuperarlo. Exploramos los elementos de diseño para el establecimiento de un programa de reproducción en cautiverio de la tortuga de las Galápagos (Chelonoidis spp.) construido en torno a los individuos con linajes mixtos que incluyeran una especie extinta. Los individuos fueron los híbridos de la especie extinta en la Isla Floreana, C. niger, y la especie viviente C. becki, encontrados recientemente en la distribución geográfica endémica de la segunda especie en el Volcán Wolf (Isla Isabela). Combinamos los datos genotípicos de 35 tortugas con un linaje cargado de C. niger usando simulaciones futuras de la descendencia generada por el programa para explorar las estrategias de reproducción en cautiverio que maximizaran en general la diversidad genética y el linaje de C. niger a la vez que se ajustaba a las restricciones de recursos, la biología de la especie y la urgencia por regresar las tortugas a la Isla Floreana para facilitar la restauración del ecosistema. En general, la diversidad genética se maximizó cuando en la simulación las tortugas estuvieron organizadas en grupos de reproducción relativamente pequeños y cuando cantidades sustanciales del genoma de C. niger fueron capturados con base en los recursos disponibles para reproducir selectivamente a las tortugas en cautiverio. La diversidad genética se vio especialmente maximizada cuando las crías reproducidas en cautiverio fueron liberadas en lugar de ser utilizadas como reproductoras adicionales. Nuestros resultados proporcionan una guía práctica y basada en la genética para la inclusión de híbridos con representación genómica de un taxón extinto en los programas de restauración de especies. Cuando incorporamos a los híbridos con diversidad genética que previamente se creía perdida en los programas con el propósito de la reintroducción de especies, nuestro estudio informa al debate continuo sobre el valor de los híbridos para la conservación de la biodiversidad. [Publisher, Chinese] 杂交对物种保护提出了重大挑战, 因为它威胁着物种的遗传完整性和适应性潜力。然而, 如果一个已灭绝类群的基因组存在于现存的杂交种中, 那么杂交也可以为物种恢复提供前所未有的机遇, 通过选择性育种重新获得灭绝物种的基因组。本研究探讨了如何利用含有已灭绝物种基因组的混合血统个体, 为加拉帕戈斯陆龟 (Chelonoidis spp.) 建立圈养繁殖计划。我们的目标个体是弗洛里安娜岛灭绝物种 C. niger 与近期在其分布范围内伊莎贝拉岛沃尔夫火山发现的现存物种 C. becki 的杂交后代。我们将 35 只含有较高比例 C. niger 血统的乌龟的基因型数据与对该计划获得后代的前进式模拟相结合, 在满足总体遗传多样性和 C. niger 血统最大化, 且考虑资源限制、物种生物学特性和弗洛里安娜岛急需重引入乌龟来促进生态系统恢复的情况下, 分析了可能的圈养繁殖策略。在模拟实验中, 建立相对较小的乌龟繁殖群时的总体遗传多样性最高, 且根据已有资源对圈养乌龟进行选择性育种可以捕获大量的 C. niger 基因组。若将圈养繁殖的后代释放到野外而不是继续用于繁殖, 则遗传多样性会特别高。我们的研究结果为将携带已灭绝类群的代表性基因组的杂交种纳入物种恢复计划提供了基于遗传学的实践指导。我们的研究还表明, 可以在物种重引入项目中纳入携带了被认为已经丢失的遗传多样性的杂交种, 这也为目前杂交种在生物多样性保护中的价值的争论提供了信息。【翻译: 胡怡思; 审校: 聂永刚】.
تواريخ الأحداث: Date Created: 20190323 Date Completed: 20191211 Latest Revision: 20200108
رمز التحديث: 20231215
DOI: 10.1111/cobi.13319
PMID: 30901116
قاعدة البيانات: MEDLINE
الوصف
تدمد:1523-1739
DOI:10.1111/cobi.13319