دورية أكاديمية

Broad-spectrum enzymatic inhibition of CRISPR-Cas12a.

التفاصيل البيبلوغرافية
العنوان: Broad-spectrum enzymatic inhibition of CRISPR-Cas12a.
المؤلفون: Knott GJ; Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA., Thornton BW; Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA., Lobba MJ; Department of Chemistry, University of California, Berkeley, CA, USA., Liu JJ; Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA., Al-Shayeb B; Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA., Watters KE; Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA., Doudna JA; Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA. doudna@berkeley.edu.; Department of Chemistry, University of California, Berkeley, CA, USA. doudna@berkeley.edu.; Molecular Biophysics & Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA. doudna@berkeley.edu.; Gladstone Institutes, San Francisco, CA, USA. doudna@berkeley.edu.; Howard Hughes Medical Institute, University of California, Berkeley, CA, USA. doudna@berkeley.edu.; Innovative Genomics Institute, University of California, Berkeley, CA, USA. doudna@berkeley.edu.
المصدر: Nature structural & molecular biology [Nat Struct Mol Biol] 2019 Apr; Vol. 26 (4), pp. 315-321. Date of Electronic Publication: 2019 Apr 01.
نوع المنشور: Journal Article; Research Support, Non-U.S. Gov't; Research Support, U.S. Gov't, Non-P.H.S.
اللغة: English
بيانات الدورية: Publisher: Nature Pub. Group Country of Publication: United States NLM ID: 101186374 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1545-9985 (Electronic) Linking ISSN: 15459985 NLM ISO Abbreviation: Nat Struct Mol Biol Subsets: MEDLINE
أسماء مطبوعة: Original Publication: New York : Nature Pub. Group, c2004-
مواضيع طبية MeSH: CRISPR-Cas Systems/*physiology, Adaptive Immunity/genetics ; Adaptive Immunity/physiology ; CRISPR-Cas Systems/genetics ; DNA Cleavage ; Endoribonucleases/genetics ; Endoribonucleases/metabolism ; Gene Editing/methods ; Protein Multimerization/genetics ; Protein Multimerization/physiology
مستخلص: Cas12a is a bacterial RNA-guided nuclease used widely for genome editing and, more recently, as a molecular diagnostic. In bacteria, Cas12a enzymes can be inhibited by bacteriophage-derived proteins, anti-CRISPRs (Acrs), to thwart clustered regularly interspaced short palindromic repeat (CRISPR) adaptive immune systems. How these inhibitors disable Cas12a by preventing programmed DNA cleavage is unknown. We show that three such inhibitors (AcrVA1, AcrVA4 and AcrVA5) block Cas12a activity via functionally distinct mechanisms, including a previously unobserved enzymatic strategy. AcrVA4 and AcrVA5 inhibit recognition of double-stranded DNA (dsDNA), with AcrVA4 driving dimerization of Cas12a. In contrast, AcrVA1 is a multiple-turnover inhibitor that triggers cleavage of the target-recognition sequence of the Cas12a-bound guide RNA to irreversibly inactivate the Cas12a complex. These distinct mechanisms equip bacteriophages with tools to evade CRISPR-Cas12a and support biotechnological applications for which multiple-turnover enzymatic inhibition of Cas12a is desirable.
References: Wright, A. V., Nuñez, J. K. & Doudna, J. A. Biology and applications of CRISPR systems: harnessing Nature’s toolbox for genome engineering. Cell 164, 29–44 (2016). (PMID: 10.1016/j.cell.2015.12.035)
Brouns, S. J. J. et al. Small CRISPR RNAs guide antiviral defense in prokaryotes. Science 321, 960–964 (2008). (PMID: 10.1126/science.1159689)
Marraffini, L. A. & Sontheimer, E. J. CRISPR interference limits horizontal gene transfer in staphylococci by targeting DNA. Science 322, 1843–1845 (2008). (PMID: 10.1126/science.1165771)
Barrangou, R. et al. CRISPR provides acquired resistance against viruses in prokaryotes. Science 315, 1709–1712 (2007). (PMID: 10.1126/science.1138140)
Garneau, J. E. et al. The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA. Nature 468, 67–71 (2010). (PMID: 10.1038/nature09523)
van Houte, S. et al. The diversity-generating benefits of a prokaryotic adaptive immune system. Nature 532, 385–388 (2016). (PMID: 10.1038/nature17436)
Pawluk, A., Davidson, A. R. & Maxwell, K. L. Anti-CRISPR: discovery, mechanism and function. Nat. Rev. Microbiol. 16, 12–17 (2018). (PMID: 10.1038/nrmicro.2017.120)
Bondy-Denomy, J. Protein inhibitors of CRISPR-Cas9. ACS Chem. Biol. 13, 417–423 (2018). (PMID: 10.1021/acschembio.7b00831)
Koonin, E. V. & Makarova, K. S. Anti-CRISPRs on the march. Science 362, 156–157 (2018). (PMID: 10.1126/science.aav2440)
Bondy-Denomy, J., Pawluk, A., Maxwell, K. L. & Davidson, A. R. Bacteriophage genes that inactivate the CRISPR/Cas bacterial immune system. Nature 493, 429–432 (2012). (PMID: 10.1038/nature11723)
Pawluk, A., Bondy-Denomy, J., Cheung, V. H. W., Maxwell, K. L. & Davidson, A. R. A new group of phage anti-CRISPR genes inhibits the type I-E CRISPR-Cas system of Pseudomonas aeruginosa. MBio 5, e00896-14 (2014).
Landsberger, M. et al. Anti-CRISPR phages cooperate to overcome CRISPR-Cas immunity. Cell 174, 908–916.e12 (2018). (PMID: 10.1016/j.cell.2018.05.058)
Borges, A. L. et al. Bacteriophage cooperation suppresses CRISPR-Cas3 and Cas9 immunity. Cell 174, 917–925.e10 (2018). (PMID: 10.1016/j.cell.2018.06.013)
Pawluk, A. et al. Naturally occurring off-switches for CRISPR-Cas9. Cell 167, 1829–1838.e9 (2016). (PMID: 10.1016/j.cell.2016.11.017)
Dong, D. et al. Structural basis of CRISPR–SpyCas9 inhibition by an anti-CRISPR protein. Nature 546, 436–439 (2017). (PMID: 10.1038/nature22377)
Shin, J. et al. Disabling Cas9 by an anti-CRISPR DNA mimic. Sci. Adv. 3, e1701620 (2017). (PMID: 10.1126/sciadv.1701620)
Harrington, L. B. et al. A broad-spectrum inhibitor of CRISPR-Cas9. Cell 170, 1224–1233.e15 (2017). (PMID: 10.1016/j.cell.2017.07.037)
Watters, K. E., Fellmann, C., Bai, H. B., Ren, S. M. & Doudna, J. A. Systematic discovery of natural CRISPR-Cas12a inhibitors. Science 362, 236–239 (2018). (PMID: 10.1126/science.aau5138)
Marino, N. D. et al. Discovery of widespread type I and type V CRISPR-Cas inhibitors. Science 362, 240–242 (2018). (PMID: 10.1126/science.aau5174)
Yamano, T. et al. Crystal structure of Cpf1 in complex with guide RNA and target DNA. Cell 165, 949–962 (2016). (PMID: 10.1016/j.cell.2016.04.003)
Dong, D. et al. The crystal structure of Cpf1 in complex with CRISPR RNA. Nature 532, 522–526 (2016). (PMID: 10.1038/nature17944)
Swarts, D. C. & Jinek, M. Cas9 versus Cas12a/Cpf1: structure-function comparisons and implications for genome editing. WIREs RNA 9, e1481 (2018). (PMID: 10.1002/wrna.1481)
Zetsche, B. et al. Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell 163, 759–771 (2015). (PMID: 10.1016/j.cell.2015.09.038)
Fonfara, I., Richter, H., Bratovič, M., Le Rhun, A. & Charpentier, E. The CRISPR-associated DNA-cleaving enzyme Cpf1 also processes precursor CRISPR RNA. Nature 532, 517–521 (2016). (PMID: 10.1038/nature17945)
Savell, K. E. & Day, J. J. Applications of CRISPR/CAS9 in the mammalian central nervous system. Yale J. Biol. Med. 90, 567–581 (2017). (PMID: 292595225733858)
Sternberg, S. H., Redding, S., Jinek, M., Greene, E. C. & Doudna, J. A. DNA interrogation by the CRISPR RNA-guided endonuclease Cas9. Nature 507, 62–67 (2014). (PMID: 10.1038/nature13011)
Chen, J. S. et al. CRISPR-Cas12a target binding unleashes indiscriminate single-stranded DNase activity. Science 360, 436–439 (2018). (PMID: 10.1126/science.aar6245)
Strohkendl, I., Saifuddin, F. A., Rybarski, J. R., Finkelstein, I. J. & Russell, R. Kinetic basis for DNA target specificity of CRISPR-Cas12a. Mol. Cell 71, 816–824.e3 (2018). (PMID: 10.1016/j.molcel.2018.06.043)
Swarts, D. C. & Jinek, M. Mechanistic insights into the cis- and trans-acting DNase activities of Cas12a. Mol. Cell 73, 589–600 (2019). (PMID: 10.1016/j.molcel.2018.11.021)
Knott, G. J. & Doudna, J. A. CRISPR-Cas guides the future of genetic engineering. Science 361, 866–869 (2018). (PMID: 10.1126/science.aat5011)
Swarts, D. C., van der Oost, J. & Jinek, M. Structural basis for guide RNA processing and seed-dependent DNA targeting by CRISPR-Cas12a. Mol. Cell 66, 221–233.e4 (2017). (PMID: 10.1016/j.molcel.2017.03.016)
Stella, S. et al. Conformational activation promotes CRISPR-Cas12a catalysis and resetting of the endonuclease activity. Cell 175, 1856–1871.e21 (2018). (PMID: 10.1016/j.cell.2018.10.045)
Kleinstiver, B. P. et al. Engineered CRISPR–Cas12a variants with increased activities and improved targeting ranges for gene, epigenetic and base editing. Nat. Biotechnol. 37, 276–282 (2019). (PMID: 10.1038/s41587-018-0011-0)
Nakamura, M. et al. Anti-CRISPR-mediated control of gene editing and synthetic circuits in eukaryotic cells. Nat. Commun. 10, 194 (2019). (PMID: 10.1038/s41467-018-08158-x)
Burstein, D. et al. New CRISPR-Cas systems from uncultivated microbes. Nature 542, 237–241 (2017). (PMID: 10.1038/nature21059)
Shmakov, S. et al. Discovery and functional characterization of diverse class 2 CRISPR-Cas systems. Mol. Cell 60, 385–397 (2015). (PMID: 10.1016/j.molcel.2015.10.008)
Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol. 30, 772–780 (2013). (PMID: 10.1093/molbev/mst010)
Stamatakis, A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30, 1312–1313 (2014). (PMID: 10.1093/bioinformatics/btu033)
Letunic, I. & Bork, P. Interactive tree of life (iTOL) v3: an online tool for the display and annotation of phylogenetic and other trees. Nucleic Acids Res. 44, W242–W245 (2016). (PMID: 10.1093/nar/gkw290)
East-Seletsky, A. et al. Two distinct RNase activities of CRISPR-C2c2 enable guide-RNA processing and RNA detection. Nature 538, 270–273 (2016). (PMID: 10.1038/nature19802)
Zhao, H., Brown, P. H. & Schuck, P. On the distribution of protein refractive index increments. Biophys. J. 100, 2309–2317 (2011). (PMID: 10.1016/j.bpj.2011.03.004)
Suloway, C. et al. Automated molecular microscopy: the new Leginon system. J. Struct. Biol. 151, 41–60 (2005). (PMID: 10.1016/j.jsb.2005.03.010)
Lander, G. C. et al. Appion: an integrated, database-driven pipeline to facilitate EM image processing. J. Struct. Biol. 166, 95–102 (2009). (PMID: 10.1016/j.jsb.2009.01.002)
معلومات مُعتمدة: United States HHMI Howard Hughes Medical Institute
المشرفين على المادة: EC 3.1.- (Endoribonucleases)
تواريخ الأحداث: Date Created: 20190403 Date Completed: 20191125 Latest Revision: 20230425
رمز التحديث: 20231215
مُعرف محوري في PubMed: PMC6449189
DOI: 10.1038/s41594-019-0208-z
PMID: 30936531
قاعدة البيانات: MEDLINE
الوصف
تدمد:1545-9985
DOI:10.1038/s41594-019-0208-z