دورية أكاديمية

Ablation of adipocyte creatine transport impairs thermogenesis and causes diet-induced obesity.

التفاصيل البيبلوغرافية
العنوان: Ablation of adipocyte creatine transport impairs thermogenesis and causes diet-induced obesity.
المؤلفون: Kazak L; Goodman Cancer Research Centre, McGill University, Montreal, Quebec, Canada. lawrence.kazak@mcgill.ca.; Department of Biochemistry, McGill University, Montreal, Quebec, Canada. lawrence.kazak@mcgill.ca., Rahbani JF; Goodman Cancer Research Centre, McGill University, Montreal, Quebec, Canada.; Department of Biochemistry, McGill University, Montreal, Quebec, Canada., Samborska B; Goodman Cancer Research Centre, McGill University, Montreal, Quebec, Canada.; Department of Biochemistry, McGill University, Montreal, Quebec, Canada., Lu GZ; Dana-Farber Cancer Institute, Department of Cell Biology, Harvard Medical School, Boston, MA, USA., Jedrychowski MP; Dana-Farber Cancer Institute, Department of Cell Biology, Harvard Medical School, Boston, MA, USA., Lajoie M; Goodman Cancer Research Centre, McGill University, Montreal, Quebec, Canada.; Department of Biochemistry, McGill University, Montreal, Quebec, Canada., Zhang S; Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA., Ramsay L; Goodman Cancer Research Centre, McGill University, Montreal, Quebec, Canada.; Department of Biochemistry, McGill University, Montreal, Quebec, Canada., Dou FY; Dana-Farber Cancer Institute, Department of Cell Biology, Harvard Medical School, Boston, MA, USA., Tenen D; Division of Endocrinology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA., Chouchani ET; Dana-Farber Cancer Institute, Department of Cell Biology, Harvard Medical School, Boston, MA, USA., Dzeja P; Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA., Watson IR; Goodman Cancer Research Centre, McGill University, Montreal, Quebec, Canada.; Department of Biochemistry, McGill University, Montreal, Quebec, Canada., Tsai L; Division of Endocrinology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA., Rosen ED; Division of Endocrinology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA., Spiegelman BM; Dana-Farber Cancer Institute, Department of Cell Biology, Harvard Medical School, Boston, MA, USA. bruce_spiegelman@dfci.harvard.edu.
المصدر: Nature metabolism [Nat Metab] 2019; Vol. 1 (3), pp. 360-370. Date of Electronic Publication: 2019 Feb 25.
نوع المنشور: Journal Article; Research Support, N.I.H., Extramural; Research Support, Non-U.S. Gov't
اللغة: English
بيانات الدورية: Publisher: Springer Nature Country of Publication: Germany NLM ID: 101736592 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 2522-5812 (Electronic) Linking ISSN: 25225812 NLM ISO Abbreviation: Nat Metab
أسماء مطبوعة: Original Publication: Berlin : Springer Nature, [2019]-
مواضيع طبية MeSH: Diet, High-Fat* , Thermogenesis*, Adipocytes/*metabolism , Creatine/*metabolism , Obesity/*etiology, Adipose Tissue, Brown/metabolism ; Animals ; Biological Transport ; Energy Metabolism ; Kininogens/metabolism ; Membrane Transport Proteins/genetics ; Membrane Transport Proteins/metabolism ; Mice ; Mice, Knockout ; Obesity/metabolism ; Subcutaneous Fat/metabolism
مستخلص: Competing Interests: Competing interests. The authors declare no competing interests
References: Lengyel, E., Makowski, L., DiGiovanni, J. & Kolonin, M. G. Cancer as a matter of fat: the crosstalk between adipose tissue and tumors. Trends Cancer 4, 374–384 (2018). (PMID: 10.1016/j.trecan.2018.03.004)
Twig, G. et al. Body-mass index in 2.3 million adolescents and cardiovascular death in adulthood. N. Engl. J. Med. 374, 2430–2440 (2016). (PMID: 10.1056/NEJMoa1503840)
Ravussin, E. et al. Reduced rate of energy expenditure as a risk factor for body-weight gain. N. Engl. J. Med. 318, 467–472 (1988). (PMID: 10.1056/NEJM198802253180802)
Jung, R. T., Shetty, P. S., James, W. P., Barrand, M. A. & Callingham, B. A. Reduced thermogenesis in obesity. Nature 279, 322–323 (1979). (PMID: 10.1038/279322a0)
Hofmann, W. E., Liu, X., Bearden, C. M., Harper, M. E. & Kozak, L. P. Effects of genetic background on thermoregulation and fatty acid-induced uncoupling of mitochondria in UCP1-deficient mice. J. Biol. Chem. 276, 12460–12465 (2001). (PMID: 10.1074/jbc.M100466200)
Liu, X. et al. Paradoxical resistance to diet-induced obesity in UCP1-deficient mice. J. Clin. Invest. 111, 399–407 (2003). (PMID: 10.1172/JCI200315737)
Mottillo, E. P. et al. Coupling of lipolysis and de novo lipogenesis in brown, beige, and white adipose tissues during chronic beta3-adrenergic receptor activation. J. Lipid Res. 55, 2276–2286 (2014). (PMID: 10.1194/jlr.M050005)
Muller, S. et al. Proteomic analysis of human brown adipose tissue reveals utilization of coupled and uncoupled energy expenditure pathways. Sci. Rep. 6, 30030 (2016). (PMID: 10.1038/srep30030)
Rowland, L. A., Maurya, S. K., Bal, N. C., Kozak, L. & Periasamy, M. Sarcolipin and uncoupling protein 1 play distinct roles in diet-induced thermogenesis and do not compensate for one another. Obesity (Silver Spring) 24, 1430–1433 (2016). (PMID: 10.1002/oby.21542)
Ukropec, J., Anunciado, R. P., Ravussin, Y., Hulver, M. W. & Kozak, L. P. UCP1-independent thermogenesis in white adipose tissue of cold-acclimated Ucp1 -/- mice. J. Biol. Chem. 281, 31894–31908 (2006).
Ikeda, K. et al. UCP1-independent signaling involving SERCA2b-mediated calcium cycling regulates beige fat thermogenesis and systemic glucose homeostasis. Nat. Med. 23, 1454–1465 (2017). (PMID: 10.1038/nm.4429)
Bertholet, A. M. et al. Mitochondrial patch clamp of beige adipocytes reveals UCP1-positive and UCP1-negative cells both exhibiting futile creatine cycling. Cell Metab. 25, 811–822 e814 (2017). (PMID: 10.1016/j.cmet.2017.03.002)
Kazak, L. et al. A creatine-driven substrate cycle enhances energy expenditure and thermogenesis in beige fat. Cell 163, 643–655 (2015). (PMID: 10.1016/j.cell.2015.09.035)
Wakatsuki, T. et al. Thermogenic responses to high-energy phosphate contents and/or hindlimb suspension in rats. Jpn J. Physiol. 46, 171–175 (1996). (PMID: 10.2170/jjphysiol.46.171)
Yamashita, H. et al. Increased growth of brown adipose tissue but its reduced thermogenic activity in creatine-depleted rats fed beta-guanidinopropionic acid. Biochim. Biophys. Acta 1230, 69–73 (1995). (PMID: 10.1016/0005-2728(95)00067-S)
Kazak, L. et al. Genetic depletion of adipocyte creatine metabolism inhibits diet-induced thermogenesis and drives obesity. Cell Metab. 26, 660–671 e663 (2017). (PMID: 10.1016/j.cmet.2017.08.009)
Fitch, C. D., Shields, R. P., Payne, W. F. & Dacus, J. M. Creatine metabolism in skeletal muscle. 3. Specificity of the creatine entry process. J. Biol. Chem. 243, 2024–2027 (1968). (PMID: 5646492)
Berlet, H. H., Bonsmann, I. & Birringer, H. Occurrence of free creatine, phosphocreatine and creatine phosphokinase in adipose tissue. Biochim. Biophys. Acta 437, 166–174 (1976). (PMID: 10.1016/0304-4165(76)90358-5)
Skelton, M. R. et al. Creatine transporter (CrT; Slc6a8) knockout mice as a model of human CrT deficiency. PLoS ONE 6, e16187 (2011). (PMID: 10.1371/journal.pone.0016187)
Lee, J., Choi, J., Aja, S., Scafidi, S. & Wolfgang, M. J. Loss of adipose fatty acid oxidation does not potentiate obesity at thermoneutrality. Cell Rep. 14, 1308–1316 (2016). (PMID: 10.1016/j.celrep.2016.01.029)
Kazak, L. et al. UCP1 deficiency causes brown fat respiratory chain depletion and sensitizes mitochondria to calcium overload-induced dysfunction. Proc. Natl Acad. Sci. USA 114, 7981–7986 (2017). (PMID: 10.1073/pnas.1705406114)
Eguchi, J. et al. Transcriptional control of adipose lipid handling by IRF4. Cell Metab. 13, 249–259 (2011). (PMID: 10.1016/j.cmet.2011.02.005)
Speakman, J. R., Krol, E. & Johnson, M. S. The functional significance of individual variation in basal metabolic rate. Physiol. Biochem. Zool. 77, 900–915 (2004). (PMID: 10.1086/427059)
Bloom, J. D. et al. Disodium (R,R)-5-[2-[[2-(3-chlorophenyl)-2-hydroxyethyl]-amino] propyl]-1,3-benzodioxole-2,2-dicarboxylate (CL 316,243). A potent beta-adrenergic agonist virtually specific for beta 3 receptors. A promising antidiabetic and antiobesity agent. J. Med. Chem. 35, 3081–3084 (1992). (PMID: 10.1021/jm00094a025)
Himms-Hagen, J., Hogan, S. & Zaror-Behrens, G. Increased brown adipose tissue thermogenesis in obese (ob/ob) mice fed a palatable diet. Am. J. Physiol. 250, E274–E281 (1986). (PMID: 3953813)
Bachman, E. S. et al. betaAR signaling required for diet-induced thermogenesis and obesity resistance. Science 297, 843–845 (2002). (PMID: 10.1126/science.1073160)
Rothwell, N. J. & Stock, M. J. A role for brown adipose tissue in diet-induced thermogenesis. Nature 281, 31–35 (1979). (PMID: 10.1038/281031a0)
Leibel, R. L. & Hirsch, J. Diminished energy requirements in reduced-obese patients. Metabolism 33, 164–170 (1984). (PMID: 10.1016/0026-0495(84)90130-6)
Eringa, E. C. et al. Regulation of vascular function and insulin sensitivity by adipose tissue: focus on perivascular adipose tissue. Microcirculation 14, 389–402 (2007). (PMID: 10.1080/10739680701303584)
Singhal, A. et al. Influence of leptin on arterial distensibility: a novel link between obesity and cardiovascular disease? Circulation 106, 1919–1924 (2002). (PMID: 10.1161/01.CIR.0000033219.24717.52)
Shimizu, I. et al. Vascular rarefaction mediates whitening of brown fat in obesity. J. Clin. Invest. 124, 2099–2112 (2014). (PMID: 10.1172/JCI71643)
Ernande, L. et al. Relationship of brown adipose tissue perfusion and function: a study through beta2-adrenoreceptor stimulation. J. Appl. Physiol. (1985) 120, 825–832 (2016). (PMID: 10.1152/japplphysiol.00634.2015)
Hankir, M. K. & Klingenspor, M. Brown adipocyte glucose metabolism: a heated subject. EMBO Rep. 19, e46404 (2018). (PMID: 10.15252/embr.201846404)
Cereijo, R. et al. CXCL14, a brown adipokine that mediates brown-fat-to-macrophage communication in thermogenic adaptation. Cell Metab. 28, 750–763.e6 (2018). (PMID: 10.1016/j.cmet.2018.07.015)
Rosell, M. et al. Brown and white adipose tissues: intrinsic differences in gene expression and response to cold exposure in mice. Am. J. Physiol. Endocrinol. Metab. 306, E945–E964 (2014). (PMID: 10.1152/ajpendo.00473.2013)
Svensson, P. A. et al. Gene expression in human brown adipose tissue. Int. J. Mol. Med. 27, 227–232 (2011). (PMID: 10.3892/ijmm.2010.566)
Gerngross, C., Schretter, J., Klingenspor, M., Schwaiger, M. & Fromme, T. Active brown fat during (18)F-FDG PET/CT imaging defines a patient group with characteristic traits and an increased probability of brown fat redetection. J. Nucl. Med. 58, 1104–1110 (2017). (PMID: 10.2967/jnumed.116.183988)
Din, M. U. et al. Postprandial oxidative metabolism of human brown fat indicates thermogenesis. Cell Metab. 28, 207–216.e3 (2018). (PMID: 10.1016/j.cmet.2018.05.020)
Fischer, A. W., Cannon, B. & Nedergaard, J. Optimal housing temperatures for mice to mimic the thermal environment of humans: an experimental study. Mol. Metab. 7, 161–170 (2018). (PMID: 10.1016/j.molmet.2017.10.009)
Speakman, J. R. & Keijer, J. Not so hot: Optimal housing temperatures for mice to mimic the thermal environment of humans. Mol. Metab. 2, 5–9 (2012). (PMID: 10.1016/j.molmet.2012.10.002)
Wada, S. et al. The tumor suppressor FLCN mediates an alternate mTOR pathway to regulate browning of adipose tissue. Genes Dev. 30, 2551–2564 (2016). (PMID: 10.1101/gad.287953.116)
Perna, M. K. et al. Creatine transporter deficiency leads to increased whole body and cellular metabolism. Amino Acids 48, 2057–2065 (2016). (PMID: 10.1007/s00726-016-2291-3)
Streijger, F. et al. Mice lacking brain-type creatine kinase activity show defective thermoregulation. Physiol. Behav. 97, 76–86 (2009). (PMID: 10.1016/j.physbeh.2009.02.003)
Fuhrer, T., Heer, D., Begemann, B. & Zamboni, N. High-throughput, accurate mass metabolome profiling of cellular extracts by flow injection-time-of-flight mass spectrometry. Anal. Chem. 83, 7074–7080 (2011). (PMID: 10.1021/ac201267k)
Katz, A. et al. Quantitative insulin sensitivity check index: a simple, accurate method for assessing insulin sensitivity in humans. J. Clin. Endocrinol. Metab. 85, 2402–2410 (2000). (PMID: 10.1210/jcem.85.7.6661)
Matthews, D. R. et al. Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 28, 412–419 (1985). (PMID: 10.1007/BF00280883)
Kim, D., Langmead, B. & Salzberg, S. L. HISAT: a fast spliced aligner with low memory requirements. Nat. Methods 12, 357–360 (2015). (PMID: 10.1038/nmeth.3317)
Liao, Y., Smyth, G. K. & Shi, W. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 30, 923–930 (2014). (PMID: 10.1093/bioinformatics/btt656)
Elias, J. E. & Gygi, S. P. Target-decoy search strategy for increased confidence in large-scale protein identifications by mass spectrometry. Nat. Methods 4, 207–214 (2007). (PMID: 10.1038/nmeth1019)
Huttlin, E. L. et al. A tissue-specific atlas of mouse protein phosphorylation and expression. Cell 143, 1174–1189 (2010). (PMID: 10.1016/j.cell.2010.12.001)
Ritchie, M. E. et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 43, e47 (2015). (PMID: 10.1093/nar/gkv007)
Smyth, G. K. Linear models and empirical bayes methods for assessing differential expression in microarray experiments. Stat. Appl. Genet. Mol. Biol. 3, Article3 (2004). (PMID: 10.2202/1544-6115.1027)
Kammers, K., Cole, R. N., Tiengwe, C. & Ruczinski, I. Detecting significant changes in protein abundance. EuPA Open Proteom. 7, 11–19 (2015). (PMID: 10.1016/j.euprot.2015.02.002)
Eden, E., Navon, R., Steinfeld, I., Lipson, D. & Yakhini, Z. GOrilla: a tool for discovery and visualization of enriched GO terms in ranked gene lists. BMC Bioinformatics 10, 48 (2009). (PMID: 10.1186/1471-2105-10-48)
معلومات مُعتمدة: UL1 TR002541 United States TR NCATS NIH HHS; R01 EY017690 United States EY NEI NIH HHS; U24 DK100469 United States DK NIDDK NIH HHS; K99 DK114528 United States DK NIDDK NIH HHS; R01 DK031405 United States DK NIDDK NIH HHS; R01 HL085744 United States HL NHLBI NIH HHS; R01 DK087092 United States DK NIDDK NIH HHS; R01 DK102173 United States DK NIDDK NIH HHS; P30 DK046200 United States DK NIDDK NIH HHS; PJT-159529 Canada CIHR; R37 DK031405 United States DK NIDDK NIH HHS; P30 DK057521 United States DK NIDDK NIH HHS
المشرفين على المادة: 0 (Kininogens)
0 (Membrane Transport Proteins)
0 (creatine transporter)
MU72812GK0 (Creatine)
تواريخ الأحداث: Date Created: 20190605 Date Completed: 20210119 Latest Revision: 20220416
رمز التحديث: 20240628
مُعرف محوري في PubMed: PMC6544051
DOI: 10.1038/s42255-019-0035-x
PMID: 31161155
قاعدة البيانات: MEDLINE
الوصف
تدمد:2522-5812
DOI:10.1038/s42255-019-0035-x