دورية أكاديمية

Salt stress differentially regulates mobilisation of carbon and nitrogen reserves during seedling establishment of Pityrocarpa moniliformis.

التفاصيل البيبلوغرافية
العنوان: Salt stress differentially regulates mobilisation of carbon and nitrogen reserves during seedling establishment of Pityrocarpa moniliformis.
المؤلفون: da Silva HA; Departamento de Biologia Celular e Genética, Centro de Biociências, Universidade Federal do Rio Grande do Norte, Campus Universitário, Lagoa Nova, Natal, Rio Grande do Norte, Brazil., de Oliveira DFA; Departamento de Biologia Celular e Genética, Centro de Biociências, Universidade Federal do Rio Grande do Norte, Campus Universitário, Lagoa Nova, Natal, Rio Grande do Norte, Brazil., Avelino AP; Departamento de Biologia Celular e Genética, Centro de Biociências, Universidade Federal do Rio Grande do Norte, Campus Universitário, Lagoa Nova, Natal, Rio Grande do Norte, Brazil., de Macêdo CEC; Departamento de Biologia Celular e Genética, Centro de Biociências, Universidade Federal do Rio Grande do Norte, Campus Universitário, Lagoa Nova, Natal, Rio Grande do Norte, Brazil., Barros-Galvão T; Departamento de Biologia Celular e Genética, Centro de Biociências, Universidade Federal do Rio Grande do Norte, Campus Universitário, Lagoa Nova, Natal, Rio Grande do Norte, Brazil., Voigt EL; Departamento de Biologia Celular e Genética, Centro de Biociências, Universidade Federal do Rio Grande do Norte, Campus Universitário, Lagoa Nova, Natal, Rio Grande do Norte, Brazil.
المصدر: Plant biology (Stuttgart, Germany) [Plant Biol (Stuttg)] 2019 Nov; Vol. 21 (6), pp. 1110-1118. Date of Electronic Publication: 2019 Jun 30.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Wiley Country of Publication: England NLM ID: 101148926 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1438-8677 (Electronic) Linking ISSN: 14358603 NLM ISO Abbreviation: Plant Biol (Stuttg) Subsets: MEDLINE
أسماء مطبوعة: Publication: Oxford, England : Wiley
Original Publication: Stuttgart : New York, NY : G. Thieme Verlag ; Thieme New York, c1999-
مواضيع طبية MeSH: Carbon/*metabolism , Moniliformis/*metabolism , Nitrogen/*metabolism , Seedlings/*metabolism, Animals ; Cotyledon/drug effects ; Cotyledon/metabolism ; Moniliformis/drug effects ; Salinity ; Seedlings/drug effects ; Sodium/metabolism ; Sodium Chloride/pharmacology
مستخلص: Seedling establishment is a critical step in environment colonisation by higher plants that frequently occurs under adverse conditions. Thus, we carried out an integrated analysis of seedling growth, water status, ion accumulation, reserve mobilisation, metabolite partitioning and hydrolase activity during seedling establishment of the native Caatinga species Piptadenia moniliformis (Benth.) Luckow & R.W. Jobson under salinity. Two-day-old seedlings were cultivated in vitro for 4 days in water agar (control) or supplemented with 50 or 100 mm NaCl. Biochemical determinations were performed according to standard spectrophotometric protocols. We found that 100 mm NaCl stimulated starch degradation, amylase activity and soluble sugar accumulation, but limited storage protein hydrolysis in the cotyledons of P. moniliformis seedlings. Although Na + accumulation in the seedling affected K + partitioning between different organs, it was not possible to associate the salt-induced changes in reserve mobilisation with Na + toxicity, or water status, in the cotyledons. Remarkably, we found that starch content increased in the roots of P. moniliformis seedlings under 100 mm NaCl, probably in response to the toxic effects of Na + . The mobilisation of carbon and nitrogen reserves is independently regulated in P. moniliformis seedlings under salt stress. The salt-induced delay in seedling establishment and the resulting changes in the source-sink relationship may lead to storage protein retention in the cotyledons. Possibly, the intensification of starch mobilisation in the cotyledons supported starch accumulation in the root as a potential mechanism to mitigate Na + toxicity.
(© 2019 German Society for Plant Sciences and The Royal Botanical Society of the Netherlands.)
References: Arnon D.I. (1949) Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiology, 24, 1-15.
Ashraf M.Y., Afaf R., Qureshi M.S., Sarwar G., Naqvi M.H. (2002) Salinity induced changes in α-amylase and protease activities and associated metabolism in cotton varieties during germination and early seedling growth stages. Acta Physiologiae Plantarum, 24, 37-44.
Ashraf M., Zafar R., Ashraf M.Y. (2003) Time-course changes in the inorganic and organic components of germinating sunflower achenes under salt (NaCl) stress. Flora, 198, 26-36.
Atia A., Debez A., Barthoumi Z., Abdelly C., Smaoui A. (2012) Investigation of embryo growth and reserve mobilization of water or salt imbibed seed of Crithmum maritimum L. Acta Botanica Gallica, 159, 17-24.
Barros-Galvão T., Alves-de-Oliveira D.F., Macêdo C.E.C., Voigt E.L. (2017) Modulation of reserve mobilization by sucrose, glutamine, and abscisic acid during seedling establishment in sunflower. Journal of Plant Growth Regulation, 36, 11-21.
Barrs H.D., Weatherley P.E. (1962) A re-examination of the relative turgidity techniques for estimating water deficits in leaves. Australian Journal of Biological Sciences, 15, 413-428.
Beevers L. (1968) Protein degradation and proteolytic activity in the cotyledons of germinating pea seeds (Pisum sativum). Phytochemistry, 7, 1837-1844.
Bewley J.D., Bradford K.J., Hilhorst H.W.M., Nonogaki H. (2013) Seeds: physiology of development, germination and dormancy. Springer, New York, USA, pp 392.
Bradford M.M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248-254.
Deinlein U., Stephan A.B., Horie T., Luo W., Xu G., Schroeder J.I. (2014) Plant salt-tolerance mechanisms. Trends in Plant Science, 19, 371-377.
Demidchick V. (2014) Mechanisms and physiological roles of K+ efflux from root cells. Journal of Plant Physiology, 171, 696-707.
Dinneny J.R. (2015) Traversing organizational scales in plant salt-stress responses. Current Opinion in Plant Biology, 23, 70-75.
Dkhil B.B., Denden M. (2010) Salt stress induced changes in germination, sugars, starch and enzyme of carbohydrate metabolism in Albemoschus esculentus L. (Moench.) seeds. African Journal of Agricultural Research, 5, 1412-1418.
Elarbi M.B., Khemiri H., Jridi T., Hamida J.B. (2009) Purification and characterization of α-amylase from safflower (Carthamus tinctorius L.) germinating seeds. Comptes Rendus Biologies, 332, 426-432.
Huang C., Wei G., Jie Y., Wang L., Zhou H., Ran C., Huang Z., Jia H., Anjum S.A. (2014) Effects of concentrations of sodium chloride on photosynthesis, antioxidative enzymes, growth and fiber yield of hybrid ramie. Plant Physiology and Biochemistry, 76, 86-93.
Jaspars E.M.J. (1965) Pigmentation of tobacco crown-gall tissues cultured in vitro in dependence of the composition of the medium. Physiologia Plantarum, 18, 933-939.
Julkowska M.M., Testerink C. (2015) Tuning plant signaling and growth to survive salt. Trends in Plant Science, 20, 586-594.
Kanai M., Higuchi K., Hagihara T., Konishi T., Ishii T., Fujita N., Nakamura Y., Maeda Y., Yoshiba M., Tadano T. (2007) Common reed produces starch granules at the shoot base in response to salt stress. New Phytologist, 176, 572-580.
Kaur S., Gupta A.K., Kaur N. (1998) Gibberellin A3 reverses the effect of salt stress in chickpea (Cicer arietinum L.) seedlings by enhancing amylase activity and mobilization of starch in cotyledons. Plant Growth Regulation, 26, 85-90.
Maathuis F.J.M., Amtmann A. (1999) K+ nutrition and Na+ toxicity: the basis of cellular K+/Na+ ratios. Annals of Botany, 84, 123-133.
Maia J.M., Voigt E.L., Ferreira-Silva S.L., Fontenele A.V., Macêdo C.E.C., Silveira J.A.G. (2013) Differences in cowpea root growth triggered by salinity and dehydration are associated with oxidative modulation involving types I and III peroxidases and apoplastic ascorbate. Journal of Plant Growth Regulation, 32, 376-387.
Marques E.C., Freitas P.A.F., Alencar N.L.M., Prisco J.T., Gomes-Filho E. (2013) Increased Na+ and Cl- accumulation induced by NaCl salinity inhibits cotyledonary reserve mobilization and alters source-sink relationship in establishing dwarf cashew seedlings. Acta Physiologiae Plantarum, 35, 2171-2182.
McCready R.M., Guggolz J., Silveira V., Owens H.S. (1950) Determination of starch and amylose in vegetables. Analytical Chemistry, 22, 1156-1158.
Miller G.L. (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Analytical Chemistry, 31, 426-428.
Morris D.L. (1948) Quantitative determination of carbohydrates with Dreywood’s anthrone reagent. Science, 107, 111-114.
Munns R., Gilliham M. (2015) Salinity tolerance of crops - what is the cost? New Phytologist, 208, 668-673.
Negrão S., Schmökel S.M., Tester M. (2017) Evaluating physiological responses of plants to salinity stress. Annals of Botany, 119, 1-11.
Neves G.Y.S., Marchiosi R., Ferrarese M.L.L., Siqueira-Soares R.C., Ferrarese-Filho O. (2010) Root growth inhibition and lignification induced by salt stress in soybean. Journal of Agronomy and Crop Science, 196, 467-473.
Pereira E.C.B., Medeiros-Filho S., Torres S.B., Martins C.C., Brito S.F. (2016) Saline stress and temperatures on germination and vigor of Piptadenia moliniformis Benth. seeds. Revista Brasileira de Engenharia Agrícola e Ambiental, 20, 649-653.
Pessoa L.G.M., Freire M.B.G.S., Wilcox B.P., Green C.H.M., Araújo R.J.T., Araújo-Filho J.C. (2016) Spectral reflectance characteristics of soils in northeastern Brazil as influenced by salinity levels. Environmental Monitoring and Assessment, 188, 616.
Prisco J.T., Vieira G.H.F. (1976) Effects of NaCl salinity on nitrogenous compounds and proteases during germination in Vigna sinensis seeds. Physiologia Plantarum, 36, 317-320.
Prisco J.T., Enéas-Filho J., Gomes-Filho E. (1981) Effects of NaCl salinity on cotyledon starch mobilization during germination of Vigna unguiculata (L.) Walp. seeds. Brazilian Journal of Botany, 4, 63-71.
Rastegar Z., Aghighi M., Kandi S. (2011) The effect of salinity and seed size on seed reserve utilization and seedling growth of soybean (Glycine max). International Journal of Agronomy and Plant Production, 2, 1-4.
Richards L.A. (1954) Diagnosis and improvement of saline and alkali soils. U.S. Government Printing Office, Washington, USA, pp 159.
Rosa M., Hilal M., González J.A., Prado F.E. (2009) Low temperature effect on enzyme activities involved in sucrose-starch partitioning in salt-stressed and salt-acclimated cotyledons of quinoa (Chenopodium quinoa Willd.) seedlings. Plant Physiology and Biochemistry, 47, 300-307.
Sebei K., Debez A., Herchi W., Boukhchina S., Kallel H. (2007) Germination kinetics and seed reserve mobilization in two flax (Linum usitatissimum L.) cultivars under moderate salt stress. Journal of Plant Biology, 50, 447-454.
Sepehri A., Saman M., Bayat S. (2016) Effects of Na2CO3 on seed germination, seed reserve utilization and seedling growth in bitter vetch (Vicia ervilia L.). Legume Research, 39, 565-571.
Silva F.A.S., Azevedo C.A.V. (2016) The Assistat Software Version 7.7 and its use in the analysis of experimental data. African Journal of Agricultural Research, 11, 3733-3740.
Silveira J.A.G., Viégas R.A., Rocha I.M.A., Moreira A.C.O.M., Moreira R.A., Oliveira J.T.A. (2003) Proline accumulation and glutamine synthetase activity are increased by salt-induced proteolysis in cashew leaves. Journal of Plant Physiology, 160, 115-123.
Soriano D., Huante P., Buen A.G., Orozco-Segovia A. (2013) Seed reserve translocation and early seedling growth of eight tree species in a tropical deciduous forest in Mexico. Plant Ecology, 214, 3161-3175.
Theodoulou F.L., Eastmond P.J. (2012) Seed storage oil catabolism: a story of give and take. Current Opinion in Plant Biology, 15, 322-328.
Van Handel E. (1968) Direct microdetermination of sucrose. Analytical Biochemistry, 22, 280-283.
Voigt E.L., Almeida T.D., Chagas R.M., Pontes L.F., Viegas R.A., Silveira J.A.G. (2009) Source-sink regulation of cotyledonary reserve mobilization during cashew (Anacardium occidentale) seedling establishment under NaCl salinity. Journal of Plant Physiology, 166, 80-89.
Wang X., Chang L., Wang B., Wang D., Li P., Wang L., Yi X., Huang Q., Peng M., Guo A. (2013) Comparative proteomics of Thellungiella halophila leaves from plants subjected to salinity reveals the importance of chloroplastic starch and soluble sugars in halophyte salt tolerance. Molecular and Cellular Proteomics, 12, 2174-2195.
Yemm E.W., Cocking E.F. (1955) The determination of amino acids with ninhydrin. Analyst, 80, 209-213.
Yemm E.W., Willis A.J. (1954) The estimation of carbohydrates in plant extracts by anthrone. Biochemical Journal, 57, 508-514.
Yin Y.-G., Kobayashi Y., Sanuki A., Kondo S., Fukuda N., Ezura H., Sugaya S., Matsukura C. (2010) Salinity induces carbohydrate accumulation and sugar-regulated starch biosynthetic genes in tomato (Solanum lycopersicum L. cv. ‘Micro-Tom’) fruits in an ABA- and osmotic stress-independent manner. Journal of Experimental Botany, 61, 563-574.
Yiu J., Tseng M., Liu C., Kuo C. (2012) Modulation of NaCl stress in Capsicum annuum L. seedling by catechin. Scientia Horticulturae, 134, 200-209.
Yu S.-M., Lo S.-F., Ho T.-H.D. (2015) Source-sink communication: regulated by hormone, nutrient, and stress cross-signaling. Trends in Plant Science, 20, 844-857.
معلومات مُعتمدة: Universidade Federal do Rio Grande do Norte; CNPq
فهرسة مساهمة: Keywords: Caatinga; hydrolytic enzymes; reserve mobilisation; salinity; source-sink relationship
المشرفين على المادة: 451W47IQ8X (Sodium Chloride)
7440-44-0 (Carbon)
9NEZ333N27 (Sodium)
N762921K75 (Nitrogen)
تواريخ الأحداث: Date Created: 20190608 Date Completed: 20200203 Latest Revision: 20200203
رمز التحديث: 20240628
DOI: 10.1111/plb.13017
PMID: 31173441
قاعدة البيانات: MEDLINE
الوصف
تدمد:1438-8677
DOI:10.1111/plb.13017