دورية أكاديمية

Single-cell RNA-seq reveals TOX as a key regulator of CD8 + T cell persistence in chronic infection.

التفاصيل البيبلوغرافية
العنوان: Single-cell RNA-seq reveals TOX as a key regulator of CD8 + T cell persistence in chronic infection.
المؤلفون: Yao C; National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA., Sun HW; National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA., Lacey NE; National Cancer Institute, National Institutes of Health, Bethesda, MD, USA., Ji Y; National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.; Cellular Biomedicine Group, Gaithersburg, MD, USA., Moseman EA; National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA.; Department of Immunology, Duke University School of Medicine, Durham, NC, USA., Shih HY; National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA., Heuston EF; National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA., Kirby M; National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA., Anderson S; National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA., Cheng J; National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA., Khan O; Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School Medicine, Philadelphia, PA, USA., Handon R; National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA., Reilley J; National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA.; National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA., Fioravanti J; National Cancer Institute, National Institutes of Health, Bethesda, MD, USA., Hu J; National Cancer Institute, National Institutes of Health, Bethesda, MD, USA., Gossa S; National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA., Wherry EJ; Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School Medicine, Philadelphia, PA, USA., Gattinoni L; National Cancer Institute, National Institutes of Health, Bethesda, MD, USA., McGavern DB; National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA., O'Shea JJ; National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA. osheaj@arb.niams.nih.gov., Schwartzberg PL; National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA. pams@nih.gov.; National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA. pams@nih.gov., Wu T; National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA. tuoqi.wu@ucdenver.edu.; National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA. tuoqi.wu@ucdenver.edu.; Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, USA. tuoqi.wu@ucdenver.edu.
المصدر: Nature immunology [Nat Immunol] 2019 Jul; Vol. 20 (7), pp. 890-901. Date of Electronic Publication: 2019 Jun 17.
نوع المنشور: Journal Article; Research Support, N.I.H., Extramural; Research Support, Non-U.S. Gov't
اللغة: English
بيانات الدورية: Publisher: Nature America Inc Country of Publication: United States NLM ID: 100941354 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1529-2916 (Electronic) Linking ISSN: 15292908 NLM ISO Abbreviation: Nat Immunol Subsets: MEDLINE
أسماء مطبوعة: Original Publication: New York, NY : Nature America Inc. c2000-
مواضيع طبية MeSH: Gene Expression Regulation* , Single-Cell Analysis*, CD8-Positive T-Lymphocytes/*immunology , CD8-Positive T-Lymphocytes/*metabolism , Homeodomain Proteins/*genetics , Infections/*etiology, Animals ; Biomarkers ; Chromatin Immunoprecipitation ; Epigenesis, Genetic ; Gene Expression Profiling ; High-Throughput Nucleotide Sequencing ; Homeodomain Proteins/metabolism ; Host-Pathogen Interactions/genetics ; Host-Pathogen Interactions/immunology ; Immunologic Memory ; Infections/metabolism ; Lymphocytic Choriomeningitis/immunology ; Lymphocytic Choriomeningitis/virology ; Lymphocytic choriomeningitis virus/immunology ; Mice ; Time Factors ; Transcriptome
مستخلص: Progenitor-like CD8 + T cells mediate long-term immunity to chronic infection and cancer and respond potently to immune checkpoint blockade. These cells share transcriptional regulators with memory precursor cells, including T cell-specific transcription factor 1 (TCF1), but it is unclear whether they adopt distinct programs to adapt to the immunosuppressive environment. By comparing the single-cell transcriptomes and epigenetic profiles of CD8 + T cells responding to acute and chronic viral infections, we found that progenitor-like CD8 + T cells became distinct from memory precursor cells before the peak of the T cell response. We discovered a coexpression gene module containing Tox that exhibited higher transcriptional activity associated with more abundant active histone marks in progenitor-like cells than memory precursor cells. Moreover, thymocyte selection-associated high mobility group box protein TOX (TOX) promoted the persistence of antiviral CD8 + T cells and was required for the programming of progenitor-like CD8 + T cells. Thus, long-term CD8 + T cell immunity to chronic viral infection requires unique transcriptional and epigenetic programs associated with the transcription factor TOX.
التعليقات: Comment in: Cell Mol Immunol. 2020 May;17(5):558-560. (PMID: 31515505)
References: Ahmed, R. & Gray, D. Immunological memory and protective immunity: understanding their relation. Science 272, 54–60 (1996). (PMID: 10.1126/science.272.5258.54)
Hashimoto, M. et al. CD8 T cell exhaustion in chronic infection and cancer: opportunities for interventions. Annu. Rev. Med. 69, 301–318 (2018). (PMID: 10.1146/annurev-med-012017-043208)
Thommen, D. S. & Schumacher, T. N. T cell dysfunction in cancer. Cancer Cell 33, 547–562 (2018). (PMID: 10.1016/j.ccell.2018.03.012)
Kaech, S. M. & Wherry, E. J. Heterogeneity and cell-fate decisions in effector and memory CD8 + T cell differentiation during viral infection. Immunity 27, 393–405 (2007). (PMID: 10.1016/j.immuni.2007.08.007)
Blackburn, S. D., Shin, H., Freeman, G. J. & Wherry, E. J. Selective expansion of a subset of exhausted CD8 T cells by αPD-L1 blockade. Proc. Natl Acad. Sci. USA 105, 15016–15021 (2008). (PMID: 10.1073/pnas.0801497105)
Wu, T. et al. The TCF1-Bcl6 axis counteracts type I interferon to repress exhaustion and maintain T cell stemness. Sci. Immunol. 1, eaai8593 (2016). (PMID: 10.1126/sciimmunol.aai8593)
Im, S. J. et al. Defining CD8 + T cells that provide the proliferative burst after PD-1 therapy. Nature 537, 417–421 (2016). (PMID: 10.1038/nature19330)
He, R. et al. Follicular CXCR5-expressing CD8 + T cells curtail chronic viral infection. Nature 537, 412–428 (2016). (PMID: 10.1038/nature19317)
Utzschneider, D. T. et al. T cell factor 1-expressing memory-like CD8 + T cells sustain the immune response to chronic viral infections. Immunity 45, 415–427 (2016). (PMID: 10.1016/j.immuni.2016.07.021)
Leong, Y. A. et al. CXCR5 + follicular cytotoxic T cells control viral infection in B cell follicles. Nat. Immunol. 17, 1187–1196 (2016). (PMID: 10.1038/ni.3543)
Siddiqui, I. et al. Intratumoral Tcf1 + PD-1 + CD8 + T cells with stem-like properties promote tumor control in response to vaccination and checkpoint blockade immunotherapy. Immunity 50, 195–211.e10 (2019). (PMID: 10.1016/j.immuni.2018.12.021)
Man, K. et al. Transcription factor IRF4 promotes CD8 + T cell exhaustion and limits the development of memory-like T cells during chronic infection. Immunity 47, 1129–1141.e5 (2017). (PMID: 10.1016/j.immuni.2017.11.021)
Doering, T. A. et al. Network analysis reveals centrally connected genes and pathways involved in CD8 + T cell exhaustion versus memory. Immunity 37, 1130–1144 (2012). (PMID: 10.1016/j.immuni.2012.08.021)
Papalexi, E. & Satija, R. Single-cell RNA sequencing to explore immune cell heterogeneity. Nat. Rev. Immunol. 18, 35–45 (2018). (PMID: 10.1038/nri.2017.76)
O’Flaherty, E. & Kaye, J. TOX defines a conserved subfamily of HMG-box proteins. BMC Genomics 4, 13 (2003). (PMID: 10.1186/1471-2164-4-13)
Pircher, H., Bürki, K., Lang, R., Hengartner, H. & Zinkernagel, R. M. Tolerance induction in double specific T-cell receptor transgenic mice varies with antigen. Nature 342, 559–561 (1989). (PMID: 10.1038/342559a0)
Ahmed, R., Salmi, A., Butler, L. D., Chiller, J. M. & Oldstone, M. B. Selection of genetic variants of lymphocytic choriomeningitis virus in spleens of persistently infected mice. Role in suppression of cytotoxic T lymphocyte response and viral persistence. J. Exp. Med. 160, 521–540 (1984). (PMID: 10.1084/jem.160.2.521)
Butler, A., Hoffman, P., Smibert, P., Papalexi, E. & Satija, R. Integrating single-cell transcriptomic data across different conditions, technologies, and species. Nat. Biotechnol. 36, 411–420 (2018). (PMID: 10.1038/nbt.4096)
Aibar, S. et al. SCENIC: single-cell regulatory network inference and clustering. Nat. Methods 14, 1083–1086 (2017). (PMID: 10.1038/nmeth.4463)
Trapnell, C. et al. The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells. Nat. Biotechnol. 32, 381–386 (2014). (PMID: 10.1038/nbt.2859)
Singer, M. et al. A distinct gene module for dysfunction uncoupled from activation in tumor-infiltrating T cells. Cell 171, 1221–1223 (2017). (PMID: 10.1016/j.cell.2017.11.006)
Aliahmad, P. & Kaye, J. Development of all CD4 T lineages requires nuclear factor TOX. J. Exp. Med. 205, 245–256 (2008). (PMID: 10.1084/jem.20071944)
Seehus, C. R. et al. The development of innate lymphoid cells requires TOX-dependent generation of a common innate lymphoid cell progenitor. Nat. Immunol. 16, 599–608 (2015). (PMID: 10.1038/ni.3168)
Page, N. et al. Expression of the DNA-binding factor TOX promotes the encephalitogenic potential of microbe-induced autoreactive CD8 + T cells. Immunity 48, 937–950.e8 (2018). (PMID: 10.1016/j.immuni.2018.04.005)
Youngblood, B. et al. Effector CD8 T cells dedifferentiate into long-lived memory cells. Nature 552, 404–409 (2017). (PMID: 10.1038/nature25144)
Gray, S. M., Amezquita, R. A., Guan, T., Kleinstein, S. H. & Kaech, S. M. Polycomb repressive complex 2-mediated chromatin repression guides effector CD8 + T cell terminal differentiation and loss of multipotency. Immunity 46, 596–608 (2017). (PMID: 10.1016/j.immuni.2017.03.012)
He, B. et al. CD8 + T cells utilize highly dynamic enhancer repertoires and regulatory circuitry in response to infections. Immunity 45, 1341–1354 (2016). (PMID: 10.1016/j.immuni.2016.11.009)
Creyghton, M. P. et al. Histone H3K27ac separates active from poised enhancers and predicts developmental state. Proc. Natl Acad. Sci. USA 107, 21931–21936 (2010). (PMID: 10.1073/pnas.1016071107)
Wu, T. et al. TCF1 is required for the T follicular helper cell response to viral infection. Cell Rep. 12, 2099–2110 (2015). (PMID: 10.1016/j.celrep.2015.08.049)
Martinez, G. J. et al. The transcription factor NFAT promotes exhaustion of activated CD8 + T cells. Immunity 42, 265–278 (2015). (PMID: 10.1016/j.immuni.2015.01.006)
Shan, Q. et al. The transcription factor Runx3 guards cytotoxic CD8 + effector T cells against deviation towards follicular helper T cell lineage. Nat. Immunol. 18, 931–939 (2017). (PMID: 10.1038/ni.3773)
Staron, M. M. et al. The transcription factor FoxO1 sustains expression of the inhibitory receptor PD-1 and survival of antiviral CD8 + T cells during chronic infection. Immunity 41, 802–814 (2014). (PMID: 10.1016/j.immuni.2014.10.013)
Cox, M. A., Kahan, S. M. & Zajac, A. J. Anti-viral CD8 T cells and the cytokines that they love. Virology 435, 157–169 (2013). (PMID: 10.1016/j.virol.2012.09.012)
Xin, G. et al. A critical role of IL-21-induced BATF in sustaining CD8-T-cell-mediated chronic viral control. Cell Rep. 13, 1118–1124 (2015). (PMID: 10.1016/j.celrep.2015.09.069)
Doedens, A. L. et al. Hypoxia-inducible factors enhance the effector responses of CD8 + T cells to persistent antigen. Nat. Immunol. 14, 1173–1182 (2013). (PMID: 10.1038/ni.2714)
Gattinoni, L. et al. Wnt signaling arrests effector T cell differentiation and generates CD8 + memory stem cells. Nat. Med. 15, 808–813 (2009). (PMID: 10.1038/nm.1982)
Miller, B. C. et al. Subsets of exhausted CD8 + T cells differentially mediate tumor control and respond to checkpoint blockade. Nat. Immunol. 20, 326–336 (2019). (PMID: 10.1038/s41590-019-0312-6)
Sade-Feldman, M. et al. Defining T cell states associated with response to checkpoint immunotherapy in melanoma. Cell 175, 998–1013.e20 (2018). (PMID: 10.1016/j.cell.2018.10.038)
Kurtulus, S. et al. Checkpoint blockade immunotherapy induces dynamic changes in PD-1 CD8 + tumor-infiltrating T cells. Immunity 50, 181–194.e6 (2019). (PMID: 10.1016/j.immuni.2018.11.014)
Snell, L. M. et al. CD8 + T cell priming in established chronic viral infection preferentially directs differentiation of memory-like cells for sustained immunity. Immunity 49, 678–694.e5 (2018). (PMID: 10.1016/j.immuni.2018.08.002)
Wherry, E. J. & Kurachi, M. Molecular and cellular insights into T cell exhaustion. Nat. Rev. Immunol. 15, 486–499 (2015). (PMID: 10.1038/nri3862)
Gattinoni, L., Speiser, D. E., Lichterfeld, M. & Bonini, C. T memory stem cells in health and disease. Nat. Med. 23, 18–27 (2017). (PMID: 10.1038/nm.4241)
Gautam, S. et al. The transcription factor c-Myb regulates CD8 + T cell stemness and antitumor immunity. Nat. Immunol. 20, 337–349 (2019). (PMID: 10.1038/s41590-018-0311-z)
Rosenberg, S. A. & Restifo, N. P. Adoptive cell transfer as personalized immunotherapy for human cancer. Science 348, 62–68 (2015). (PMID: 10.1126/science.aaa4967)
Fooksman, D. R., Nussenzweig, M. C. & Dustin, M. L. Myeloid cells limit production of antibody-secreting cells after immunization in the lymph node. J. Immunol. 192, 1004–1012 (2014). (PMID: 10.4049/jimmunol.1300977)
Araki, K. et al. Pathogenic virus-specific T cells cause disease during treatment with the calcineurin inhibitor FK506: implications for transplantation. J. Exp. Med. 207, 2355–2367 (2010). (PMID: 10.1084/jem.20100124)
Macosko, E. Z. et al. Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets. Cell 161, 1202–1214 (2015). (PMID: 10.1016/j.cell.2015.05.002)
Zhou, Y. et al. Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. Nat. Commun. 10, 1523 (2019). (PMID: 10.1038/s41467-019-09234-6)
Langfelder, P. & Horvath, S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics 9, 559 (2008). (PMID: 10.1186/1471-2105-9-559)
Schmidl, C., Rendeiro, A. F., Sheffield, N. C. & Bock, C. ChIPmentation: fast, robust, low-input ChIP-seq for histones and transcription factors. Nat. Methods 12, 963–965 (2015). (PMID: 10.1038/nmeth.3542)
Langmead, B., Trapnell, C., Pop, M. & Salzberg, S. L. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 10, R25 (2009). (PMID: 10.1186/gb-2009-10-3-r25)
Zhang, Y. et al. Model-based analysis of ChIP-Seq (MACS). Genome Biol. 9, R137 (2008). (PMID: 10.1186/gb-2008-9-9-r137)
Heinz, S. et al. Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. Mol. Cell 38, 576–589 (2010). (PMID: 10.1016/j.molcel.2010.05.004)
Trapnell, C. & Salzberg, S. L. How to map billions of short reads onto genomes. Nat. Biotechnol. 27, 455–457 (2009). (PMID: 10.1038/nbt0509-455)
Yu, G., Wang, L. G., Han, Y. & He, Q. Y. clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS 16, 284–287 (2012). (PMID: 10.1089/omi.2011.0118)
معلومات مُعتمدة: K99 AG056524 United States AG NIA NIH HHS; R00 AG056524 United States AG NIA NIH HHS; Z99 AI999999 United States ImNIH Intramural NIH HHS
المشرفين على المادة: 0 (Biomarkers)
0 (Homeodomain Proteins)
0 (Rhox8 protein, mouse)
تواريخ الأحداث: Date Created: 20190619 Date Completed: 20190709 Latest Revision: 20220420
رمز التحديث: 20240513
مُعرف محوري في PubMed: PMC6588409
DOI: 10.1038/s41590-019-0403-4
PMID: 31209400
قاعدة البيانات: MEDLINE
الوصف
تدمد:1529-2916
DOI:10.1038/s41590-019-0403-4