دورية أكاديمية

Calibration of mathematical water quality modeling in a river basin under critical conditions.

التفاصيل البيبلوغرافية
العنوان: Calibration of mathematical water quality modeling in a river basin under critical conditions.
المؤلفون: Nakamura CH; Department of Civil and Environmental Engineering, Bauru School of Engineering, São Paulo State University (UNESP), Bauru, SP, Brazil., Salla MR; School of Civil Engineering, Federal University of Uberlândia (UFU), Uberlândia, MG, Brazil., Oliveira de Jesus JA; COBRAPE - Cia. Brasileira de Projetos e Empreendimentos, São Paulo, SP, Brazil., Ribeiro da Silva GH; Department of Civil and Environmental Engineering, Bauru School of Engineering, São Paulo State University (UNESP), Bauru, SP, Brazil.
المصدر: Water environment research : a research publication of the Water Environment Federation [Water Environ Res] 2019 Dec; Vol. 91 (12), pp. 1678-1691. Date of Electronic Publication: 2019 Jul 23.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Wiley Subscription Services on behalf of The Water Environment Foundation Country of Publication: United States NLM ID: 9886167 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1554-7531 (Electronic) Linking ISSN: 10614303 NLM ISO Abbreviation: Water Environ Res Subsets: MEDLINE
أسماء مطبوعة: Publication: Hoboken, NJ : Wiley Subscription Services on behalf of The Water Environment Foundation
Original Publication: Alexandria, VA : The Federation, c1992-
مواضيع طبية MeSH: Water Pollutants, Chemical* , Water Quality*, Brazil ; Calibration ; Cities ; Environmental Monitoring ; Rivers
مستخلص: In order to assist with the management of water resources, this study aimed to calibrate the water quality model "Ottocoded Critical Basins Analysis" (ABaCO) in a section of the Lambari River, located in the city of Poços de Caldas, Minas Gerais, Brazil, and it is considered qualitatively critical by the "National Water Agency" (ANA). The calibration results, obtained automatically by the Microsoft Excel ® tool Solver, showed good adjustments between the simulated and observed concentrations for the following parameters: total nitrogen, organic phosphorus, inorganic phosphorus, and total phosphorus, considering a visual interpretation of the graphics. The other calibrated parameters (BOD, DO, organic nitrogen, ammoniacal nitrogen, and nitrate) obtained satisfactory adjustments. When evaluating the results by coefficient of determination, it was observed that all parameters showed negative values to one or more field campaigns. However, the calibrated values of the parameters can be incorporated into the model to obtain a first view of the river's qualitative situation, aiming to plan, control, and protect water resources to assist in decision-making and to favor performance of intervention analyses of environmental control measures. PRACTITIONER POINTS: Calibration of water quality model in a section of a river located in Brazil considered qualitatively critical; The calibration occurred automatically and manually, when it was necessary, in an Excel ® spreadsheet, generated from the water quality model; The automation process was performed by the Excel ® Solver tool through the objective function; Through visual interpretation, it was noticed that the calibrated parameters were well adjusted to the data observed in the field; Sensitivity analysis showed that the studied parameters did not show significant differences in relation to the values calibrated for parameters.
(© 2019 Water Environment Federation.)
References: Afshar, A., Kazemi, H., & Saadatpour, M. (2011). Particle swarm optimization for automatic calibration of large scale water quality model (CE-QUAL-W2): Application to Karkheh reservoir, Iran. Water Resouces Management, 25(10), 2613-2632. https://doi.org/10.1007/s11269-011-9829-7.
Beck, M. B. (1983). A procedure for modeling. In G. T. Orlob (Ed.), Mathematical modeling of water quality: Sreams, lakes and reservoirs (pp. 11-41). Chichester, UK: John Wiley and Sons.
Bonganha, C. A., Guiguer, N. Jr, Pereira, S. Y., Oliveira, L. A., & Ribeiro, M. L. (2007). Conceitos e fundamentos da modelagem matemática para gerenciamento de recursos hídricos subterrâneos. Revista Analytica, 30, 116-120.
Bowie, G. L., Mills, W. B., Porcella, D. B., Campbell, C. L., Pagenkoff, J. R., Rupp, G. L., … Gherini, S. A. (1985). Rates, constants, and kinetics formulations in surface water quality modeling (2nd ed.) Athens, GA: U.S. Environmental Protection Agency.
Broekhuizen, N., Park, J. B. K., McBride, G. B., & Craggs, R. J. (2012). Modification, calibration and verification of IWA River Water Quality Model to simulate a pilot-scale high rate algal pond. Water Research, 46(9), 2911-2926. https://doi.org/10.1016/j.watres.2012.03.011.
Brown, L. C., & Barnwell, T. O. Jr (1987). The enhanced stream water quality models QUAL2E and QUAL2E-UNCAS: Documentation and user manual. Athens, GA: U.S. Environmental Protection Agency.
Cariboni, J., Gatelli, A., Liska, R., & Saltelli, A. (2007). The role of sensitivity analysis in ecological modelling. Ecological Modelling, 203(1-2), 167-182. https://doi.org/10.1016/j.ecolmodel.2005.10.045.
Chapra, S. C. (2008). Surface water-quality modeling. Long Grove, IL: Waveland Press Inc.
CONAMA Resolution no. 357, 17 March 2005. Retrieved from http://www2.mma.gov.br/port/conama/legiabre.cfm?codlegi=459.
CONAMA Resolution no. 430. 13 May 2011. Retrieved from http://www2.mma.gov.br/port/conama/legiabre.cfm?codlegi=646.
Costa, P. C. G., Delgado, S. L., & Carmo, C. C. C. (2001). Projeto hidrogeoambiental das estâncias hidrominerais de Poços de Caldas. Belo Horizonte, MG: COMIG.
de Queiroz, F. M., de Matos, A. T., & Von Sperling, M. (2015). Estimativa do coeficiente de reaeração da água em canal raso de fundo deslizante. Engenharia Sanitária e Ambiental, 20(1), 79-88. https://doi.org/10.1590/S1413-41522015020000113819.
DMAE Poços de Caldas (2018). Ações de melhoria nos sistemas de água e esgoto 2017/2018. Estatísticas. Poços de Caldas, MG: DMAE PC. Retrieved from http://www.dmaepc.mg.gov.br/Institucional/estatisticas.
Drolc, A., & Koncan, J. Z. (1996). Water quality modelling of the river Sava, Slovenia. Water Research, 30(11), 2587-2592. https://doi.org/10.1016/S0043-1354(96)00154-6.
Fassò, A., & Perri, P. F. (2006). Sensitivity analysis. In A. H. El-Shaarawi, W. W. Piegorsch, & G. Høst (Eds.), Enclyclopedia of environmetrics (pp. 1968-1982). Chichester: John Wiley & Sons. https://doi.org/10.1002/9780470057339.vas015.
Fischer, H. B., List, E. J., Koh, R. C. Y., Imberger, J., & Brooks, N. H. (1979). Mixing in inland and coastal waters. San Diego, CA: American Press Inc.
Fontes, S. B., & Pejon, O. J. (2008). Proposal of a geo-environmental zoning method based on Ottobasin compartmentalization. Bulletin of Engineering Geology and the Environment, 67(4), 555-563. https://doi.org/10.1007/s10064-008-0161-2.
Fundação Estadual do Meio Ambiente (2015). Plano para o incremento do percentual de tratamento de esgotos sanitários na bacia hidrográfica dos rios Mogi Guaçu e Pardo. Belo Horizonte, MG: FEMA.
Galvão, A. L. C. O., & Galvão, W. S. (2012). As relações espaciais entre os dados de localização de cavernas e as ottobacias - base hidrográfica geocodificada do Brasil. Revista Brasileira de Espeleologia, 2(2), 38-56.
Garcia, J. I. B. (2011). Sistema de suporte a decisão para o lançamento de efluentes. Doctoral dissertation, Escola Politécnica, University of São Paulo, São Paulo, Brazil. Retrieved from https://www.teses.usp.br/teses/disponiveis/3/3147/tde-13072011-170631/publico/Tese_Joaquin_Garcia.pdf.
Hamid, A., Bhat, S. A., Bhat, S. U., & Jehangir, A. (2016). Environmetric techniques in water quality assessment and monitoring: A case study. Environental Earth Sciences, 75(4), 321. https://doi.org/10.1007/s12665-015-5139-3.
Jacobi, P. R., Cibim, J. C., & Souza, A. N. (2016). Crise da água na Região Metropolitana de São Paulo (2013-2015). GEOUSP: Espaço e. Tempo, 19(3), 422-444. https://doi.org/10.11606/issn.2179-0892.geousp.2015.104114.
Jesus, J. A. O. (2006). Utilização de modelagem matemática 3D na gestão da qualidade da água em mananciais - aplicação no reservatório Billings. Doctoral dissertation, School of Public Health, University of São Paulo, São Paulo. Retrieved from http://www.teses.usp.br/teses/disponiveis/6/6134/tde-17082006-174447/en.php.
Knapik, H. G., Fernandes, C. V. S., Masini, L. S., Marin, M. C. F. C., & Porto, M. F. A. (2008). Análise crítica da calibração do modelo de qualidade da água QUAL2E - estudo de caso da bacia do Alto Iguaçu. Revista De Gestão De Água Da América Latina, 5(2), 25-37.
Laboratório de Sistemas de Suporte a Decisões em Engenharia Ambiental e de Recursos Hídricos, Consórcio Cobrape/CH2MHILL, & National Water Agency (2016). Modelo ABaCO: Versão beta 1.0.12.4. São Paulo: LabSid/Cobrape/CH2MHill.
Laboratório de Sistemas de Suporte a Decisões em Engenharia Ambiental e de Recursos Hídricos, Consórcio Cobrape/CH2MHILL, & National Water Agency. (2017). ABaCO - análise de bacias críticas ottocodificadas: Manual técnico: versão 1. São Paulo, SP: LabSid.
Marengo, J. A., Alves, L. M., Beserra, E. A., & Lacerda, F. F. (2011). Variabilidade e mudanças climáticas no semiárido brasileiro. In S. S. Medeiros, H. R. Gheyi, C. O. Galvão, & V. P. S. Paz (Eds.), Recursos hídricos em regiões áridas e semiáridas (pp. 384-422). Campina Grande, PB: Instituto Nacional do Semiárido.
Mineiro, I., & de Gestão das Águas, & Comitê de Bacia Hidrográfica dos Afluentes Mineiros dos Rios Mogi Guaçu e Pardo., (2010). Plano diretor da bacia hidrográfica dos afluentes mineiros dos rios Mogi-Guaçu e Pardo (unidade de gestão GD06): Fase II - prognóstico. Delfim Moreira, MG: Fundação ROGE.
Nakamura, C. H., Grisotto, L. E. G., Jesus, J. A. O., Gallego, C. E. C., Pereira, C. A. A. O., Bittencourt, A. G., & Tonso, E. J. (2012). Avaliação dos impactos de ações integradas de saneamento ambiental sobre a qualidade das águas dos mananciais de abastecimento público da Região Metropolitana de São Paulo, Brasil. Proceedings of 6th ANNPAS National Meeting. Belém, Brazil.
Nakamura, M. S. (2010). Modelación y análisis de calidad del Río Atibaia en el tramo entre el punto de captación de la ciudad de Atibaia y el punto de vertido de la ciudad de Paulínia (São Paulo - Brasil). Master’s thesis, Polytechnic University of Valencia, Valencia, Spain. Retrieved from https://riunet.upv.es/handle/10251/14086?show=full.
National Water Agency (2012). Nota técnica conjunta nº 002/2012/SPR/SRE-ANA. Brasília, DF: ANA.
National Water Agency (2016). Estudo de modelagem quantitativa e qualitativa de trechos de rio em bacias hidrográficas consideradas críticas. : Consórcio Cobrape/CH2MHill.
National Water Agency, & Environmental Company of São Paulo State (2011). Guia nacional de coleta e preservação de amostras: Água, sedimento, comunidades aquáticas e efluentes líquidos. Brasília, DF/São Paulo, SP: ANA/CETESB.
Nguyen, T. H., Helm, B., Hettiarachchi, H., Caucci, S., & Krebs, P. (2019). The selection of design methods for river water quality monitoring networks: A review. Environmental Earth Sciences, 78, 96. https://doi.org/10.1007/s12665-019-8110-x.
Oppa, L. F. (2007). Utilização de modelo matemático de qualidade da água para análise de alternativas de enquadramento do rio Vacacaí Mirim. Master’s thesis, Federal University of Santa Maria, Santa Maria, Brazil. Retrieved from https://repositorio.ufsm.br/handle/1/7834.
Palmieri, V., & de Carvalho, R. J. (2006). QUAL2E model for the Corumbataí River. Ecological Modelling, 198(1-2), 269-275. https://doi.org/10.1016/j.ecolmodel.2006.04.018.
Paredes-Arquiola, J., Andreau-Álvarez, J., Martín-Monerris, M., & Solera, A. (2010). Water quantity and quality models applied to the Jucar river basin, Spain. Water Resources Management, 24(11), 2759-2779. https://doi.org/10.1007/s11269-010-9578-z.
Paz, A. R., Buarque, D. C., Collischonn, W., Victoria, D. C., & Andrade, R. G. (2011). Discretização de modelos hidrológicos de grande escala: grade regular x mini-bacias. Proceedings of 19th Brazilian Symposium on Water Resources. Maceió, AL, Brazil. Retrieved from https://abrh.s3.sa-east-1.amazonasws.com/Sumarios/81/2efb01789b0ed4b68e4433eed3433e91_2629fa438e5a0e9b490e2a5df839b04b.pdf.
Pinto, A. C. C. (1991). Esquemas de alta resolução para controle da dispersão numérica em simulação dereservatórios. (Master's thesis, School of Mechanical Engineering, University of Campinas, Campinas Brazil). Retrieved from: http://repositorio.unicamp.br/jspui/handle/REPOSIP/263283.
Porto, M. (2003). Recursos hídricos e saneamento na Região Metropolitana de São Paulo: Um desafio do tamanho da cidade. Série Água Brasil. Brasília, DF: World Bank.
Rebouças, A. C. (1997). Água na região Nordeste: Desperdício e escassez. Estudos Avançados, 11(29), 127-154. https://doi.org/10.1590/S0103-40141997000100007.
Rice, E. W., Baird, R. B., Eaton, A. D., & Clesceri, L. S. (2012). Standard methods for examination of water and wastewater (2nd ed.). Denver, CO: AWWA.
Rode, M., Suhr, U., & Wriedt, G. (2007). Multi-objective calibration of a river water quality model: Information content of calibration data. Ecological Modelling, 204(1-2), 129-142. https://doi.org/10.1016/j.ecolmodel.2006.12.037.
Romanholi, M. P., & de Queiroz Filho, A. P. (2018). Base hidrográfica ottocodificada na escala 1:25.000: Exemplo da bacia do Córrego Itapiranga (SP). Revista Caminhos De Geografia, 19(68), 46-60. https://doi.org/10.14393/RCG196804.
Sacoman, M. A. R. (2012). Otimização de projetos utilizando GRG, solver e excel. Proceedings of 40th Brazilian Congress for Engineering Education. Belém, Brazil: http://www.abenge.org.br/cobenge/arquivos/7/artigos/102911.pdf.
Salla, M. R., Fernandes, L. E., Pereira, C. E., Silva Jhunior, H. C., & Lima, G. (2016). Importance of calibration for mathematical modeling of self-purification of lotic environments. Acta Limnologica. Brasiliensia, 28(e27), https://doi.org/10.1590/s2179-975x5016.
Salla, M. R., Paredes-Arquiola, J., Solera, A., Álvarez, J. A., Pereira, C. E., Alamy Filho, J. E., & Oliveira, A. L. (2014). Integrated modeling of water quantity and quality in Araguari river basin, Brazil. Latin American Journal of Aquatic Research, 42(1), 224-244. 103856/vol42-issue1-fulltext-19.
Salla, M. R., Pereira, C. E., Alamy Filho, J. E., Paula, L. M., & Pinheiro, A. M. (2013). Estudo da autodepuração do Rio Jordão, localizado na bacia hidrográfica do Rio Dourados. Engenharia Sanitária e Ambiental, 18(2), 105-114. https://doi.org/10.1590/S1413-41522013000200002.
Saltelli, A. (2002). Sensitivity analysis for importance assessment. Risk Analysis, 22(3), 579-590. https://doi.org/10.1111/0272-4332.00040.
Sincock, A. M., Wheater, H. S., & Whitehead, P. G. (2003). Calibration and sensitivity analysis of a river water quality model under unsteady flow conditions. Journal of Hydrology, 277(3-4), 214-229. https://doi.org/10.1016/S0022-1694(03)00127-6.
Soares, P. A., Pinheiro, A., & Zucco, E. (2013). Determinação do coeficiente de dispersão longitudinal em rios. Revista de Gestão de Água na América Latina, 10(2), 27-36. https://doi.org/10.21168/rega.v10n2.p27-36.
Srinivas, R., & Singh, A. P. (2018). An integrated fuzzy based advanced eutrophication simulation model to develop best management scenarios for a river basin. Environmental Science and Pollution Research, 25(9), 9012-9039. https://doi.org/10.1007/s11356-018-1206-0.
Tang, H., Xin, X., Dai, W., & Xiao, Y. (2010). Parameter identification for modeling river network using a genetic algorithm. Journal of Hydrodinamics, 22(2), 246-253. https://doi.org/10.1016/S1001-6058(09)60051-2.
Tonon, K. (2014). Modelagem da qualidade da água utilizando os modelos Streeter-Phelps e QUAL-UFMG na bacia do rio Lambari - Poços de Caldas (MG). Master’s thesis, Federal University of Alfenas, Poços de Caldas, Brazil. Retrieved from https://bdtd.unifal-mg.edu.br:8443/handle/tede/618.
United States Environmental Protection Agency (2009). Guidance on the development, evaluation and application of environmental models. Washington, DC: Council for Regulatory Environmental Modeling/U.S.EPA.
Von Sperling, M. (2007). Estudos e modelagem da qualidade da água de rios (7th ed.). Belo Horizonte, MG: Editora da UFMG.
White, K., & Chaubey, I. (2005). Sensitivity analysis, calibration and validation for a multisite and multivariable SWAT model. Journal of the American Water Resources Association, 41(5), 1077-1089. https://doi.org/10.1111/j.1752-1688.2005.tb03786.x.
Zhang, Y., Shao, Q., & Taylor, J. A. (2016). A balanced calibration of water quantity and quality by multi-objective optimization for integrated water system model. Journal of Hydrology, 538, 802-816. https://doi.org/10.1016/j.jhydrol.2016.05.001.
فهرسة مساهمة: Keywords: Lambari River; calibration; water quality; water quality modeling
المشرفين على المادة: 0 (Water Pollutants, Chemical)
تواريخ الأحداث: Date Created: 20190629 Date Completed: 20191121 Latest Revision: 20200108
رمز التحديث: 20221213
DOI: 10.1002/wer.1175
PMID: 31251422
قاعدة البيانات: MEDLINE
الوصف
تدمد:1554-7531
DOI:10.1002/wer.1175