دورية أكاديمية

Therapeutic bullfrog oil-based nanoemulsion for oral application: Development, characterization and stability.

التفاصيل البيبلوغرافية
العنوان: Therapeutic bullfrog oil-based nanoemulsion for oral application: Development, characterization and stability.
المؤلفون: Rutckeviski R; Universidade Federal do Rio Grande do Norte (UFRN), Programa de Pós-graduação em Ciências Farmacêuticas, Departamento de Farmácia, 59010-180, Natal-RN, Brazil.; UFRN, Laboratório de Sistemas Dispersos (LaSiD), Departamento de Farmácia59010-180, Natal-RN, Brazil., Xavier FH; UFRN, Laboratório de Sistemas Dispersos (LaSiD), Departamento de Farmácia59010-180, Natal-RN, Brazil., Morais ARDV; UFRN, Laboratório de Sistemas Dispersos (LaSiD), Departamento de Farmácia59010-180, Natal-RN, Brazil.; UFRN, Programa de Pós-graduação em Nanotecnologia Farmacêutica, LaSiD Departamento de Farmácia, 59010-180Natal-RN, Brazil., Amaral-Machado L; UFRN, Laboratório de Sistemas Dispersos (LaSiD), Departamento de Farmácia59010-180, Natal-RN, Brazil.; UFRN, Programa de Pós-graduação em Ciências da Saúde, LaSiD, Departamento de Farmácia, 59010-180, Natal-RN, Brazil., Alencar EDN; UFRN, Laboratório de Sistemas Dispersos (LaSiD), Departamento de Farmácia59010-180, Natal-RN, Brazil.; UFRN, Programa de Pós-graduação em Nanotecnologia Farmacêutica, LaSiD Departamento de Farmácia, 59010-180Natal-RN, Brazil., Genre J; UFRN, Laboratório de Sistemas Dispersos (LaSiD), Departamento de Farmácia59010-180, Natal-RN, Brazil.; UFRN, Programa de Pós-graduação em Ciências da Saúde, LaSiD, Departamento de Farmácia, 59010-180, Natal-RN, Brazil., De Souza Araujo AA; Universidade Federal de SergipeDepartamento de Farmácia. 49100-000São Cristovão-SE, Brazil., Egito ESTD; Universidade Federal do Rio Grande do Norte (UFRN), Programa de Pós-graduação em Ciências Farmacêuticas, Departamento de Farmácia, 59010-180, Natal-RN, Brazil.; UFRN, Laboratório de Sistemas Dispersos (LaSiD), Departamento de Farmácia59010-180, Natal-RN, Brazil.; UFRN, Programa de Pós-graduação em Nanotecnologia Farmacêutica, LaSiD Departamento de Farmácia, 59010-180Natal-RN, Brazil.; UFRN, Programa de Pós-graduação em Ciências da Saúde, LaSiD, Departamento de Farmácia, 59010-180, Natal-RN, Brazil.
المصدر: Acta pharmaceutica (Zagreb, Croatia) [Acta Pharm] 2019 Mar 01; Vol. 69 (1), pp. 33-48.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Sciendo Country of Publication: Poland NLM ID: 9303678 Publication Model: Print Cited Medium: Internet ISSN: 1846-9558 (Electronic) Linking ISSN: 13300075 NLM ISO Abbreviation: Acta Pharm Subsets: MEDLINE
أسماء مطبوعة: Publication: Warsaw, Poland : Sciendo
Original Publication: Zagreb : Croatian Pharmaceutical Society, 1992-
مواضيع طبية MeSH: Emulsions/*chemistry , Nanoparticles/*chemistry , Oils/*chemistry, Administration, Oral ; Drug Delivery Systems/methods ; Oxidation-Reduction/drug effects ; Particle Size
مستخلص: The aim of this study was to develop, optimize, and characterize a stable therapeutic bullfrog oil based nanoemulsion for oral application using a rational experimental design approach. The optimized oral nanoemulsion contained 0.2 % sodium benzoate and 0.02 % propyl-paraben as preservatives; 0.1 % sucralose and 0.4 % acesulfam K as sweeteners and 0.1 % tutti-frutti as flavoring to mask the unpleasant organoleptic characteristics of bullfrog oil. The oral O/W-nanoemulsion showed the droplet size, PDI, zeta potential, and pH of 410 ± 8 nm, 0.20 ± 0.02, -38 ± 2.5 mV, and 6.43 ± 0.05, respectively. The optimized oral nanoemulsion showed a milky single-phase and optimal physical stability at 25 °C for 90 days. Indeed, higher oxidation induction time and lower formation of peroxides in the oral nanoemulsion were responsible for improving its stability. A therapeutic delivery system containing bullfrog oil for oral application was successfully developed and optimized with ideal thermo-oxidative stability.
References: 1. J. L. Burguera and M. Burguera, Analytical applications of emulsions and microemulsions, Talanta96 (2012) 11–20; https://doi.org/10.1016/j.talanta.2012.01.03010.1016/j.talanta.2012.01.030.
2. A. H. Saberi, Y. Fang and D. J. McClements, Fabrication of vitamin E-enriched nanoemulsions: Factors affecting particle size using spontaneous emulsification, J. Colloid Interface Sci.391 (2013) 95–102; https://doi.org/10.1016/j.jcis.2012.08.06910.1016/j.jcis.2012.08.069.
3. D. T. Piorkowski and D. J. McClements, Beverage emulsions: Recent developments in formulation, production, and applications, Food Hydrocoll.42 (2014) 5–41; https://doi.org/10.1016/j.food-hyd.2013.07.009.
4. D. J. McClements and Y. Li, Structured emulsion-based delivery systems: Controlling the digestion and release of lipophilic food components, Adv. Colloid Interface Sci.159 (2010) 213–228; https://doi.org/10.1016/j.cis.2010.06.01010.1016/j.cis.2010.06.010.
5. P. Karthik and C. Anandharamakrishnan, Enhancing omega-3 fatty acids nanoemulsion stability and in-vitro digestibility through emulsifiers, J. Food Eng.187 (2016) 92–105; https://doi.org/10.1016/j.jfoodeng.2016.05.00310.1016/j.jfoodeng.2016.05.003.
6. I. A. Nehdi, Characteristics and composition of Washingtonia filifera (Linden ex André) H. Wendl. seed and seed oil, Food Chem.126 (2011) 197–202; https://doi.org/10.1016/j.food-chem.2010.10.099.
7. R. Rutckeviski, F. H. Xavier-Jr, A. R. V. Morais, E. N. Alencar, L. A. Machado, J. Genre, A. Gondim and E. S. T. Egito, Thermo-oxidative stability evaluation of Bullfrog (Rana catesbeiana Shaw) oil, Molecules22 (2017) 606; https://doi.org/10.3390/molecules2204060610.3390/molecules22040606.
8. J. R. Nelson, O. Wani, H. T. May and M. Budoff, Potential benefits of eicosapentaenoic acid on atherosclerotic plaques, Vascul. Pharmacol.91 (2017) 1–9; https://doi.org/10.1016/j.vph.2017.02.00410.1016/j.vph.2017.02.004.
9. D. S. Kelley, Modulation of human immune and inflammatory responses by dietary fatty acids, Nutrition17 (2001) 669–673; https://doi.org/10.1016/S0899-9007(01)00576-710.1016/S0899-9007(01)00576-7.
10. E. Kurtys, U. L. M. Eisel, J. M. Verkuyl, L. M. Broersen, R. A. J. O. Dierckx and E. F. J. Vries, The combination of vitamins and omega-3 fatty acids has an enhanced anti-inflammatory effect on microglia, Neurochem. Int.99 (2016) 206–214; https://doi.org/10.1016/j.neuint.2016.07.00810.1016/j.neuint.2016.07.00827465516.
11. A. M. Eltweri, A. L. Thomas, M. Metcalfe, P. C. Calder, A. R. Dennison and D. J. Bowrey, Potential applications of fish oils rich in omega-3 polyunsaturated fatty acids in the management of gastrointestinal cancer, Clin. Nutr.36 (2017) 65–78; https://doi.org/10.1016/j.clnu.2016.01.00710.1016/j.clnu.2016.01.00726833289.
12. E. N. Alencar, F. H. Xavier-Jr, A. R. V. Morais, T. R. F. Dantas, N. Dantas-Santos, L. M. Verissimo, V. L. G. Rehder, G. M. Chaves, A. G. Oliveira and E. S. T. Egito, Chemical characterization and antimicrobial activity evaluation of natural oil nanostructured emulsions, J. Nanosci. Nanotechnol.15 (2015) 880–888; https://doi.org/10.1166/jnn.2015.918710.1166/jnn.2015.918726328453.
13. L. Amaral-Machado, F. H. Xavier-Jr, R. Rutckeviski, A. R. V. Morais, E. N. Alencar, T. R. F. Dantas, A. K. M. Cruz, J. Genre, A. A. Silva-Jr, M. F. F. Pedrosa, H. A. O. Rocha and E. S. T. Egito, New trends on antineoplastic therapy research: Bullfrog (Rana catesbeiana Shaw) oil nanostructured systems, Molecules21 (2016) 585; https://doi.org/10.3390/molecules2105058510.3390/molecules21050585.
14. D. J. McClements and E. A. Decker, Lipid oxidation in oil-in-water emulsions: Impact of molecular environment on chemical reactions in heterogeneous food systems, J. Food Sci.65 (2000) 1270–1282; https://doi.org/10.1111/j.1365-2621.2000.tb10596.x10.1111/j.1365-2621.2000.tb10596.x.
15. ‘Stability testing of active pharmaceutical ingredients and finished pharmaceutical products’, in 953, ed. by World_Health_Organization, 2009, pp. 1–53; http://apps.who.int/medicinedocs/documents/s19133en/s19133en.pdf; last access date June 12, 2018.
16. F. H. Xavier-Jr, K. G. H. Silva, I. E. G. Farias, A. R. V. Morais, E. N. Alencar, I. B. Araujo, A. G. Oliveira and E. S. T. Egito, Prospective study for the development of emulsion systems containing natural oil products, J. Drug Deliv. Sci. Technol.22 (2012) 367–372; https://doi.org/10.1016/S1773-2247(12)50061-410.1016/S1773-2247(12)50061-4.
17. C. Jacobsen, M. B. Let, N. S. Nielsen and A. S. Meyer, Antioxidant strategies for preventing oxidative flavour deterioration of foods enriched with n-3 polyunsaturated lipids: a comparative evaluation, Trends Food Sci. Technol.19 (2008) 76–93; https://doi.org/10.1016/j.tifs.2007.08.00110.1016/j.tifs.2007.08.001.
18. C. C. Berton-Carabin, M.-H. Ropers and C. Genot, Lipid oxidation in oil-in-water emulsions: Involvement of the interfacial layer, Compr. Rev. Food Sci. Food Saf.13 (2014) 945–977; https://doi.org/10.1111/1541-4337.1209710.1111/1541-4337.12097.
19. M. Golding and T. J. Wooster, The influence of emulsion structure and stability on lipid digestion, Curr. Opin. Colloid Interface Sci.15 (2010) 90–101; https://doi.org/10.1016/j.cocis.2009.11.00610.1016/j.cocis.2009.11.006.
20. R. C. Rowe, Handbook of Pharmaceutical Excipients, Pharmaceutical Press, London 2012; ISBN 978 1 58212 135 2 (USA).
21. V. Krstonošić, L. Dokić, P. Dokić and T. Dapčević, Effects of xanthan gum on physicochemical properties and stability of corn oil-in-water emulsions stabilized by polyoxyethylene (20) sorbitan monooleate, Food Hydrocoll.23 (2009) 2212–2218; https://doi.org/10.1016/j.foodhyd.2009.05.00310.1016/j.foodhyd.2009.05.003.
22. K. Shimada, H. Muta, Y. Nakamura, H. Okada, K. Matsuo, S. Yoshioka, T. Matsudaira and T. Nakamura, Iron-binding property and antioxidative activity of xanthan on the autoxidation of soybean oil in emulsion, J. Agric. Food Chem.42 (1994) 1607–1611; https://doi.org/10.1021/jf00044a00410.1021/jf00044a004.
23. M. Hatzopoulos, C. James, S. Rogers, I. Grillo, P. Dowding and J. Eastoe, Effects of small ionic amphiphilic additives on reverse microemulsion morphology, J. Colloid Interface Sci.421 (2014) 56–63; https://doi.org/10.1016/j.jcis.2014.01.02410.1016/j.jcis.2014.01.02424594032.
24. J. Marcus, S. Wolfrum, D. Touraud and W. Kunz, Influence of high intensity sweeteners and sugar alcohols on a beverage microemulsion, J. Colloid Interface Sci.460 (2015) 105–112; https://doi.org/10.1016/j.jcis.2015.08.03610.1016/j.jcis.2015.08.03626319326.
25. T. N. Barradas, V. E. B. Campos, J. P. Senna, C. S. C. Coutinho, B. S. Tebaldi, K. G. d. H. Silva and C. R. E. Mansur, Development and characterization of promising o/w nanoemulsions containing sweet fennel essential oil and non-ionic sufactants, Colloids Surf. A Physicochem. Eng. Asp.480 (2015) 214–221; https://doi.org/10.1016/j.colsurfa.2014.12.00110.1016/j.colsurfa.2014.12.001.
26. M. I. G. Rosas, J. M. Castro, L. A. O. Martínez, L. S. Trujillo and O. M. Belloso, Long-term stability of food-grade nanoemulsions from high methoxyl pectin containing essential oils, Food Hydrocoll.52 (2016) 438–446; https://doi.org/10.1016/j.foodhyd.2015.07.01710.1016/j.foodhyd.2015.07.017.
27. S. Mayer, J. Weiss and D. J. McClements, Behavior of vitamin E acetate delivery systems under simulated gastrointestinal conditions: Lipid digestion and bioaccessibility of low-energy nanoemulsions, J. Colloid Interface Sci.404 (2013) 215–222; https://doi.org/10.1016/j.jcis.2013.04.04810.1016/j.jcis.2013.04.04823721832.
28. C. Arancibia, N. Riquelme, R. Zúñiga and S. Matiacevich, Comparing the effectiveness of natural and synthetic emulsifiers on oxidative and physical stability of avocado oil-based nanoemulsions, Innov. Food Sci. Emerg. Technol.44 (2017) 8–166; https://doi.org/10.1016/j.ifset.2017.06.00910.1016/j.ifset.2017.06.009.
29. C. Poyato, I. Navarro-Blasco, M. I. Calvo, R. Y. Cavero, I. Astiasarán and D. Ansorena, Oxidative stability of O/W and W/O/W emulsions: Effect of lipid composition and antioxidant polarity, Food Res. Int.51 (2013) 132–140; https://doi.org/10.1016/j.foodres.2012.11.03210.1016/j.foodres.2012.11.032.
30. D. S. Gerding, B. D. Oomah, F. Acevedo, E. Morales, M. Bustamante, C. Shene and M. Rubilar, High carotenoid bioaccessibility through linseed oil nanoemulsions with enhanced physical and oxidative stability, Food Chem.199 (2016) 463–470; https://doi.org/10.1016/j.foodchem.2015.12.00410.1016/j.foodchem.2015.12.00426775996.
فهرسة مساهمة: Keywords: bullfrog oil; experimental design; nanoemulsion; oral application; therapeutic nanosystem; thermo-oxidative stability
المشرفين على المادة: 0 (Emulsions)
0 (Oils)
تواريخ الأحداث: Date Created: 20190702 Date Completed: 20191211 Latest Revision: 20230118
رمز التحديث: 20240628
DOI: 10.2478/acph-2019-0001
PMID: 31259715
قاعدة البيانات: MEDLINE
الوصف
تدمد:1846-9558
DOI:10.2478/acph-2019-0001