دورية أكاديمية

Prolonged Pharmacokinetic Interaction Between Capecitabine and a CYP2C9 Substrate, Celecoxib.

التفاصيل البيبلوغرافية
العنوان: Prolonged Pharmacokinetic Interaction Between Capecitabine and a CYP2C9 Substrate, Celecoxib.
المؤلفون: Ramírez J; Department of Medicine, University of Chicago, Chicago, IL, USA., House LK; Department of Medicine, University of Chicago, Chicago, IL, USA., Karrison TG; Department of Public Health Sciences, University of Chicago, Chicago, IL, USA.; Comprehensive Cancer Center, University of Chicago, Chicago, IL, USA., Janisch LA; Department of Medicine, University of Chicago, Chicago, IL, USA., Turcich M; Department of Medicine, University of Chicago, Chicago, IL, USA., Salgia R; Department of Medicine, University of Chicago, Chicago, IL, USA.; Comprehensive Cancer Center, University of Chicago, Chicago, IL, USA., Ratain MJ; Department of Medicine, University of Chicago, Chicago, IL, USA.; Comprehensive Cancer Center, University of Chicago, Chicago, IL, USA.; Committee on Clinical Pharmacology and Pharmacogenomics, University of Chicago, Chicago, IL, USA., Sharma MR; Department of Medicine, University of Chicago, Chicago, IL, USA.; Comprehensive Cancer Center, University of Chicago, Chicago, IL, USA.; Committee on Clinical Pharmacology and Pharmacogenomics, University of Chicago, Chicago, IL, USA.
المصدر: Journal of clinical pharmacology [J Clin Pharmacol] 2019 Dec; Vol. 59 (12), pp. 1632-1640. Date of Electronic Publication: 2019 Jul 05.
نوع المنشور: Clinical Trial; Journal Article; Research Support, N.I.H., Extramural
اللغة: English
بيانات الدورية: Publisher: Wiley Country of Publication: England NLM ID: 0366372 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1552-4604 (Electronic) Linking ISSN: 00912700 NLM ISO Abbreviation: J Clin Pharmacol Subsets: MEDLINE
أسماء مطبوعة: Publication: 2013- : Oxford : Wiley
Original Publication: Stamford, Conn., Hall Associates.
مواضيع طبية MeSH: Capecitabine/*pharmacokinetics , Celecoxib/*pharmacokinetics , Cytochrome P-450 CYP2C9/*metabolism, Adult ; Aged ; Aged, 80 and over ; Area Under Curve ; Drug Interactions/physiology ; Female ; Humans ; Male ; Middle Aged
مستخلص: This study investigated the time course and magnitude of the pharmacokinetic interaction between capecitabine and the cytochrome P450 (CYP) 2C9 substrate celecoxib, with implications for coadministration of fluoropyrimidines with CYP2C9 substrates such as warfarin. Patients received celecoxib 200 mg orally twice daily continuously, with capecitabine (1000 mg/m 2 orally twice daily for 14 days every 21 days) starting 7 days later. Assessment of the drug-drug interaction (DDI) potential was performed using equivalence testing, which assumes that there is no clinically relevant DDI when the calculated 90% confidence intervals (CIs) of the drug exposure ratios fall within the range of 0.80 to 1.25. Comparison of steady-state pharmacokinetic parameters of celecoxib between day 7 (cycle 0, celecoxib only) and day 14 (cycle 1, celecoxib + capecitabine) showed geometric mean ratios of 1.24 (90%CI, 1.04-1.49), 1.30 (1.11-1.53) and 1.28 (1.11-1.47) for maximum plasma concentration, minimum plasma concentration, and area under the concentration-time curve from time zero to 8 hours, respectively. Comparison of day 7 vs day 21 (cycle 1, after 1 week washout of capecitabine) showed a further increase in the geometric mean ratio of maximum plasma concentration (1.39; 90%CI, 1.16-1.66), minimum plasma concentration (1.53; 1.10-2.12) and area under the concentration-time curve from time zero to 8 hours (1.41; 1.19-1.68). Because the 90%CIs fell outside the prespecified equivalence margin, we conclude that coadministration results in a DDI (increased celecoxib exposure) that persists for at least 7 days after capecitabine discontinuation. Close monitoring should be undertaken when administering fluoropyrimidines with CYP2C9 substrates with narrow therapeutic indexes while also weighing the benefits and risks for individual patients.
(© 2019, The American College of Clinical Pharmacology.)
References: Venturini M. Rational development of capecitabine. Eur J Cancer. 2002;38(suppl 2):3-9.
Xeloda (capecitabine) tablets, for oral use [package insert]. South San Francisco, CA: Hoffman-La Roche, Inc.; 2016.
Brown MC. An adverse interaction between warfarin and 5-fluorouracil: a case report and review of the literature. Chemotherapy. 1999;45(5):392-395.
Kolesar JM, Johnson CL, Freeberg BL, Berlin JD, Schiller JH. Warfarin-5-FU interaction-a consecutive case series. Pharmacotherapy. 1999;19(12):1445-1449.
Masci G, Magagnoli M, Zucali PA, et al. Minidose warfarin prophylaxis for catheter-associated thrombosis in cancer patients: can it be safely associated with fluorouracil-based chemotherapy? J Clin Oncol. 2003;21(4),736-739.
Camidge R, Reigner B, Cassidy J, et al. Significant effect of capecitabine on the pharmacokinetics and pharmacodynamics of warfarin in patients with cancer. J Clin Oncol. 2005;23(21):4719-4725.
Davis DA, Fugate SE. Increasing warfarin dosage reductions associated with concurrent warfarin and repeated cycles of 5-fluorouracil therapy. Pharmacotherapy. 2005;25(3):442-447.
Saif MW. An adverse interaction between warfarin and fluoropyrimidines revisited. Clin Colorectal Cancer. 2005;5(3):175-180.
Shah HR, Ledbetter L, Diasio R, Saif MW. A retrospective study of coagulation abnormalities in patients receiving concomitant capecitabine and warfarin. Clin Colorectal Cancer. 2006;5(5):354-358.
Giunta G. Adverse interaction between capecitabine and warfarin resulting in altered coagulation parameters: a review of the literature starting from a case report. Case Rep Med. 2010;2010:1-4.
Hata T, Kudo T, Sakai D, et al. Impact of capecitabine and S-1 on anticoagulant activity of warfarin in patients with gastrointestinal cancer. Cancer Chemother Pharmacol. 2016;78(2):389-396.
Gallus AS, Baker RI, Chong BH, Ockelford PA, Street AM. Consensus guidelines for warfarin therapy. Recommendations from the Australasian Society of Thrombosis and Haemostasis. Med J Aust. 2000;172(12):600-605.
Elbe JN, West BD, Link KP. A comparison of the isomers of warfarin. Biochem Pharmacol. 1966;15(7):1003-1006.
Lewis RJ, Trager WF, Chann KK, et al. Warfarin: stereochemical aspects of its metabolism and the interaction with phenylbutazone. J Clin Invest. 1974;53(6):1607-1617.
Choonara IA, Haynes BP, Cholerton S, Breckenridge AM, Park BK. Enantiomers of warfarin and vitamin K1 metabolism. Br J Clin Pharmacol. 1986;22(6):729-732.
Park JY, Kim KA. Inhibitory effect of 5-fluorouracil on human cytochrome P(450) isoforms in human liver microsomes. Eur J Clin Pharmacol. 2003;59(5-6):407-409.
Konishi H, Yoshimoto T, Morita K, Minouchi T, Sato T, Yamaji A. Depression of phenytoin metabolic capacity by 5-fluorouracil and doxifluridine in rats. J Pharm Pharmacol. 2003;55(1):143-149.
Amiral J, Seghatchian J. Monitoring of anticoagulant therapy in cancer patients with thrombosis and the usefulness of blood activation markers. Transfus Apher Sci. 2017;56(3):279-286.
Celebrex (celecoxib) capsules [package insert]. New York, NY: Pfizer Inc.; 2005.
Chen J, Shen P, Zhang XC, Zhao MD, Zhang XG, Yang L. Efficacy and safety profile of celecoxib for treating advanced cancers: a meta-analysis of 11 randomized clinical trials. Clin Ther. 2014;36(8):1253-1263.
Tang C, Shou M, Mei Q, Rushmore TH, Rodrigues AD. Major role of human liver microsomal cytochrome P450 2C9 (CYP2C9) in the oxidative metabolism of celecoxib, a novel cyclooxygenase-II inhibitor. J Pharmacol Exp Ther. 2000;293(2):453-459.
Sandberg M, Yasar U, Stromberg P, Hoog JO, Eliasson E. Oxidation of celecoxib by polymorphic cytochrome P450 2C9 and alcohol dehydrogenase. Br J Clin Pharmacol. 2002;54(4):423-429.
Paulson SK, Hribar JD, Liu NW, et al. Metabolism and excretion of [(14)C]celecoxib in healthy male volunteers. Drug Metab Dispos. 2000;28(3):308-314.
Celebrex (celecoxib capsules) [approval package]. New York, NY: G.D. Searle; 1998.
Clinical drug interaction studies-study design, data analysis, and clinical implications. Guidance for Industry. Food and Drug Administration. https://www.fda.gov/regulatory-information/search-fda-guidance-documents/clinical-drug-interaction-studies-study-design-data-analysis-and-clinical-implications-guidance. Accesed June 7, 2019.
Wood K, Byron E, Janisch L, Salgia R, Sharma MR. Capecitabine and celecoxib as a promising therapy for thymic neoplasms. Am J Clin Oncol. 2018;41(10):963-966.
Miyazaki S, Satoh H, Ikenishi M, et al. Pharmacokinetic model analysis of the interaction between phenytoin and capecitabine. Int J Clin Pharmacol Ther. 2016;54(9):657-665.
Gunes A, Coskun U, Boruban C, et al. Inhibitory effect of 5-fluorouracil on cytochrome P450 2C9 activity in cancer patients. Basic Clin Pharmacol Toxicol. 2006;98(2):197-200.
Sager JE, Tripathy S, Price LS, et al. In vitro to in vivo extrapolation of the complex drug-drug interaction of bupropion and its metabolites with CYP2D6: simultaneous reversible inhibition and CYP2D6 downregulation. Biochem Pharmacol. 2017;123:85-96.
Zamek-Gliszczynski MJ, Mohutsky MA, Rehmel J, Ke AB. Investigational small-molecule drug selectively suppresses constitutive CYP2B6 activity at the gene transcription level: physiologically based pharmacokinetic model assessment of clinical drug interaction risk. Drug Metab Dispos. 2014;42(6):1008-1015.
Healan-Greenberg C, Waring JF, Kempf DJ, Blomme EA, Tirona RG, Kim RB. A human immunodeficiency virus protease inhibitor is a novel functional inhibitor of human pregnane X receptor. Drug Metab Dispos. 2008;36(3):500-507.
Lim YP, Ma CY, Liu CL, et al. Sesamin: a naturally occurring lignan inhibits CYP3A4 by antagonizing the pregnane X receptor activation. Evid Based Complement Alternat Med. 2012;2012:1-5.
Pan X, Lee YK, Jeong H. Farnesoid X receptor agonist represses cytochrome P450 2D6 expression by upregulating small heterodimer partner. Drug Metab Dispos. 2015;43(7):1002-1007.
Yu D, Green B, Marrone A, et al. Suppression of CYP2C9 by microRNA has-miR-128-3p in human liver cells and association with hepatocellular carcinoma. Sci Rep. 2015;5:8534.
Rieger JK, Reutter S, Hofmann U, Schwab M, Zanger UM. Inflammation-associated microRNA-130b down-regulates cytochrome P450 activities and directly targets CYP2C9. Drug Metab Dispos. 2015;43(6):884-888.
Pascussi JM, Gerbal-Chaloin S, Drocourt L, Maurel P, Vilarem MJ. The expression of CYP2B6, CYP2C9 and CYP3A4 genes: a tangle of networks of nuclear and steroid receptors. Biochim Biophys Acta. 2003;1619(3):243-253.
Chen Y, Goldstein JA. The transcriptional regulation of the human CYP2C genes. Curr Drug Metab. 2009;10(6):567-578.
Moscovitz JE, Kalgutkar AS, Nulick K, et al. Establishing transcriptional signatures to differentiate PXR-, CAR-, and AhR-mediated regulation of drug metabolism and transport genes in cryopreserved human hepatocytes. J Pharmacol Exp Ther. 2018; 365(2):262-271.
Hariparsad N, Ramsden D, Palamanda J, et al. Considerations from the IQ Induction Working Group in response to drug-drug interaction guidance from regulatory agencies: focus on downregulation, CYP2C induction, and CYP2B6 positive control. Drug Metab Dispos. 2017;45(10):1049-1059.
Sommadossi JP, Gewirtz DA, Diasio RB, Aubert C, Cano JP, Goldman ID. Rapid catabolism of 5-fluorouracil in freshly isolated rat hepatocytes as analyzed by high performance liquid chromatography. J Biol Chem. 1982;257(14):8171-8176.
Reigner B, Blesch K, Weidekamm E. Clinical pharmacokinetics of capecitabine. Clin Pharmacokinet. 2001;40(2):85-104.
Yotsumoto K, Akiyoshi T, Wada N, Imaoka A, Ohtani H. 5-Fluorouracil treatment alters the expression of intestinal transporters in rat. Biopharm Drug Dispos. 2017;38(9):509-516.
Pagliarulo V, Ancona P, Niso M, et al. The interaction of celecoxib with MDR transporters enhances the activity of mitomycin C in a bladder cancer cell line. Mol Cancer. 2013;12:47.
Helsby NA, Lo WY, Thompson P, Laking GR. Do 5-fluorouracil therapies alter CYP2C19 metaboliser status? Cancer Chemother Pharmacol. 2010;66(2):405-407.
Uppugunduri CR, Daali Y, Desmeules H, Dayer P, Krajinovic M, Ansari M. Transcriptional regulation of CYP2C19 and its role in altered enzyme activity. Curr Drug Metab. 2012;13(8):1196-1204.
Kim SY, Kang JY, Hartman JH, et al. Metabolism of R- and S-warfarin by CYP2C19 into four hydroxywarfarins. Drug Metab Lett. 2012;6(3):157-164.
Miners JO, Birkett DJ. Cytochrome P4502C9: an enzyme of major importance in human drug metabolism. Br J Clin Pharmacol. 1998;45(6):525-538.
Lee CR, Pieper JA, Frye RF, Hinderliter AL, Blaisdell JA, Goldstein JA. Tolbutamide, flurbiprofen, and losartan as probes of CYP2C9 activity in humans. J Clin Pharmacol. 2003;43(1):84-91.
Dyar R, Hall S, McIntyre B. Warfarin prescription and administration: reducing the delay, improving the safety. BMJ Qual Improv Rep. 2015;4(1). pii: u204509.w1983.
Franco V, Perucca E. CYP2C9 polymorphisms and phenytoin metabolism: implications for adverse effects. Expert Opin Drug Metab Toxicol. 2015;11(8):1269-1279.
معلومات مُعتمدة: U01GM061393 United States GM NIGMS NIH HHS; K12CA139160 United States CA NCI NIH HHS; P30 CA14599 United States CA NCI NIH HHS
فهرسة مساهمة: Keywords: CYP2C9; capecitabine; celecoxib; drug-drug interaction; pharmacokinetics
المشرفين على المادة: 6804DJ8Z9U (Capecitabine)
EC 1.14.13.- (CYP2C9 protein, human)
EC 1.14.13.- (Cytochrome P-450 CYP2C9)
JCX84Q7J1L (Celecoxib)
تواريخ الأحداث: Date Created: 20190706 Date Completed: 20200819 Latest Revision: 20200819
رمز التحديث: 20221213
DOI: 10.1002/jcph.1476
PMID: 31274208
قاعدة البيانات: MEDLINE
الوصف
تدمد:1552-4604
DOI:10.1002/jcph.1476