دورية أكاديمية

Inferring processes of coevolutionary diversification in a community of Panamanian strangler figs and associated pollinating wasps.

التفاصيل البيبلوغرافية
العنوان: Inferring processes of coevolutionary diversification in a community of Panamanian strangler figs and associated pollinating wasps.
المؤلفون: Satler JD; Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, Iowa, 50011., Herre EA; Smithsonian Tropical Research Institute, Unit 9100, P.O. Box 0498, Diplomatic Post Office, Armed Forces America 34002-9998., Jandér KC; Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18D, 752 36, Uppsala, Sweden., Eaton DAR; Department of Ecology, Evolution and Environmental Biology, Columbia University, New York, New York, 10027., Machado CA; Department of Biology, University of Maryland, College Park, Maryland, 20742., Heath TA; Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, Iowa, 50011., Nason JD; Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, Iowa, 50011.
المصدر: Evolution; international journal of organic evolution [Evolution] 2019 Nov; Vol. 73 (11), pp. 2295-2311. Date of Electronic Publication: 2019 Aug 08.
نوع المنشور: Journal Article; Research Support, Non-U.S. Gov't; Research Support, U.S. Gov't, Non-P.H.S.
اللغة: English
بيانات الدورية: Publisher: Oxford University Press Country of Publication: United States NLM ID: 0373224 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1558-5646 (Electronic) Linking ISSN: 00143820 NLM ISO Abbreviation: Evolution Subsets: MEDLINE
أسماء مطبوعة: Publication: 2023- : Oxford : Oxford University Press
Original Publication: Lancaster, Pa. : Society for the Study of Evolution
مواضيع طبية MeSH: Biological Coevolution* , Genetic Variation* , Pollination*, Ficus/*genetics , Wasps/*genetics, Animals ; Ecosystem ; Ficus/physiology ; Models, Genetic ; Wasps/physiology
مستخلص: The fig and pollinator wasp obligate mutualism is diverse (∼750 described species), ecologically important, and ancient (∼80 Ma). Once thought to be an example of strict one-to-one cospeciation, current thinking suggests genera of pollinator wasps codiversify with corresponding sections of figs, but the degree to which cospeciation or other processes contribute to the association at finer scales is unclear. Here, we use genome-wide sequence data from a community of Panamanian strangler figs and associated wasp pollinators to estimate the relative contributions of four evolutionary processes generating cophylogenetic patterns in this mutualism: cospeciation, host switching, pollinator speciation, and pollinator extinction. Using a model-based approach adapted from the study of gene family evolution, our results demonstrate the importance of host switching of pollinator wasps at this fine phylogenetic and regional scale. Although we estimate a modest amount of cospeciation, simulations reveal the number of putative cospeciation events to be consistent with what would be expected by chance. Additionally, model selection tests identify host switching as a critical parameter for explaining cophylogenetic patterns in this system. Our study demonstrates a promising approach through which the history of evolutionary association between interacting lineages can be rigorously modeled and tested in a probabilistic phylogenetic framework.
(© 2019 The Author(s). Evolution © 2019 The Society for the Study of Evolution.)
التعليقات: Comment in: Evolution. 2019 Nov;73(11):2345-2346. (PMID: 31583697)
References: Ahmed, S., S. G. Compton, R. K. Butlin, and P. M. Gilmartin. 2009. Wind-borne insects mediate directional pollen transfer between desert fig trees 160 kilometers apart. Proc. Natl. Acad. Sci. USA 106:20342-20347.
Akaike, H. 1974. A new look at the statistical model identification. IEEE Trans. Automat. Contr. 19:716-723.
Alcala, N., T. Jenkins, P. Christe, and S. Vuilleumier. 2017. Host shift and cospeciation rate estimation from co-phylogenies. Ecol. Lett. 20:1014-1024.
Bain, A., R. M. Borges, M.-H. Chevallier, H. Vignes, N. Kobmoo, Y. Q. Peng, A. Cruaud, J. Y. Rasplus, F. Kjellberg, and M. Hossaert-Mckey. 2016. Geographic structuring into vicariant species-pairs in a wide-ranging, high-dispersal plant-insect mutualism: the case of Ficus racemosa and its pollinating wasps. Evol. Ecol. 30:663-684.
Baird, N. A., P. D. Etter, T. S. Atwood, M. C. Currey, A. L. Shiver, Z. A. Lewis, E. U. Selker, W. A. Cresko, and E. A. Johnson. 2008. Rapid SNP discovery and genetic mapping using sequenced RAD markers. PLoS ONE 3:e3376.
Balbuena, J. A., R. Míguez-Lozano, and I. Blasco-Costa. 2013. PACo: a novel procrustes application to cophylogenetic analysis. PLoS ONE 8:e61048.
Baudet, C., B. Donati, B. Sinaimeri, P. Crescenzi, C. Gautier, C. Matias, and M.-F. Sagot. 2014. Cophylogeny reconstruction via an approximate Bayesian computation. Syst. Biol. 64:416-431.
Berg, C. 1989. Classification and distribution of Ficus. Experientia 45:605-611.
Bolger, A. M., M. Lohse, and B. Usadel. 2014. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30:2114-2120.
Bouckaert, R., J. Heled, D. Kühnert, T. Vaughan, C.-H. Wu, D. Xie, M. A. Suchard, A. Rambaut, and A. J. Drummond. 2014. BEAST 2: a software platform for Bayesian evolutionary analysis. PLoS Comput. Biol. 10:e1003537.
Branstetter, M. G., B. N. Danforth, J. P. Pitts, B. C. Faircloth, P. S. Ward, M. L. Buffington, M. W. Gates, R. R. Kula, and S. G. Brady. 2017. Phylogenomic insights into the evolution of stinging wasps and the origins of ants and bees. Curr. Biol. 27:1019-1025.
Bronstein, J. L. 1987. Maintenance of species-specificity in a neotropical fig-pollinator wasp mutualism. Oikos 48:39-46.
Bryant, D., R. Bouckaert, J. Felsenstein, N. A. Rosenberg, and A. RoyChoudhury. 2012. Inferring species trees directly from biallelic genetic markers: bypassing gene trees in a full coalescent analysis. Mol. Biol. Evol. 29:1917-1932.
Burnham, K., and D. Anderson. 2002. Model selection and multimodel inference: a practical information-theoretic approach. 2nd. ed. Springer-Verlag, New York, NY.
Capella-Gutiérrez, S., J. M. Silla-Martínez, and T. Gabaldón. 2009. trimal: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 25:1972-1973.
Castresana, J. 2000. Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol. Biol. Evol. 17:540-552.
Chen, Y., S. G. Compton, M. Liu, and X.-Y. Chen. 2012. Fig trees at the northern limit of their range: the distributions of cryptic pollinators indicate multiple glacial refugia. Mol. Ecol. 21:1687-1701.
Chifman, J., and L. Kubatko. 2014. Quartet inference from SNP data under the coalescent model. Bioinformatics 30:3317-3324.
Conow, C., D. Fielder, Y. Ovadia, and R. Libeskind-Hadas. 2010. Jane: a new tool for the cophylogeny reconstruction problem. Algorithms Mol. Biol. 5:16.
Cornille, A., J. Underhill, A. Cruaud, M. Hossaert-McKey, S. Johnson, K. Tolley, F. Kjellberg, S. Van Noort, and M. Proffit. 2012. Floral volatiles, pollinator sharing and diversification in the fig-wasp mutualism: insights from Ficus natalensis, and its two wasp pollinators (South Africa). Proc. R. Soc. Lond. B: Biol. Sci. 279:1731-1739.
Crawford, N. G., B. C. Faircloth, J. E. McCormack, R. T. Brumfield, K. Winker, and T. C. Glenn. 2012. More than 1000 ultraconserved elements provide evidence that turtles are the sister group of archosaurs. Biol. Lett. 8:783-786.
Cruaud, A., and J.-Y. Rasplus. 2016. Testing cospeciation through large-scale cophylogenetic studies. Curr. Opin. Insect. Sci. 18:53-59.
Cruaud, A., N. RÃÿnsted, B. Chantarasuwan, L. S. Chou, W. L. Clement, A. Couloux, B. Cousins, G. Genson, R. D. Harrison, P. E. Hanson, et al. 2012. An extreme case of plant-insect codiversification: figs and fig-pollinating wasps. Syst. Biol. 61:1029-1047.
Darwell, C. T., S. al Beidh, and J. M. Cook. 2014. Molecular species delimitation of a symbiotic fig-pollinating wasp species complex reveals extreme deviation from reciprocal partner specificity. BMC Evol. Biol. 14:189.
Donoghue, M. J., and B. R. Moore. 2003. Toward an integrative historical biogeography. Integr. Comp. Biol. 43:261-270.
Doyle, J., and J. Doyle. 1987. Genomic plant DNA preparation from fresh tissue-ctab method. Phytochem. Bull. 19:11-15.
Doyon, J.-P., V. Ranwez, V. Daubin, and V. Berry. 2011. Models, algorithms and programs for phylogeny reconciliation. Brief. Bioinform. 12:392-400.
Eaton, D. A. R. 2014. PyRAD: assembly of de novo RADseq loci for phylogenetic analyses. Bioinformatics 30:1844-1849.
Ehrlich, P. R., and P. H. Raven. 1964. Butterflies and plants: a study in coevolution. Evolution 18:586-608.
Faircloth, B. C. 2015. PHYLUCE is a software package for the analysis of conserved genomic loci. Bioinformatics 32:786-788.
Faircloth, B. C., M. G. Branstetter, N. D. White, and S. G. Brady. 2015. Target enrichment of ultraconserved elements from arthropods provides a genomic perspective on relationships among hymenoptera. Mol. Ecol. Resour. 15:489-501.
Grabherr, M. G., B. J. Haas, M. Yassour, J. Z. Levin, D. A. Thompson, I. Amit, X. Adiconis, L. Fan, R. Raychowdhury, Q. Zeng, et al. 2011. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat. Biotechnol. 29:644-652.
Groussin, M., F. Mazel, J. G. Sanders, C. S. Smillie, S. Lavergne, W. Thuiller, and E. J. Alm. 2017. Unraveling the processes shaping mammalian gut microbiomes over evolutionary time. Nat. Commun. 8:14319.
Hafner, M. S., and S. A. Nadler. 1988. Phylogenetic trees support the coevolution of parasites and their hosts. Nature 332:258.
Haine, E. R., J. Martin, and J. M. Cook. 2006. Deep mtDNA divergences indicate cryptic species in a fig-pollinating wasp. BMC Evol. Biol. 6:83.
Heled, J., and A. J. Drummond. 2010. Bayesian inference of species trees from multilocus data. Mol. Biol. Evol. 27:570-580.
Herre, E. A. 1993. Population structure and the evolution of virulence in nematode parasites of fig wasps. Science 259:1442-1445.
Hird, S., L. Kubatko, and B. Carstens. 2010. Rapid and accurate species tree estimation for phylogeographic investigations using replicated subsampling. Mol. Phylogenet. Evol. 57:888-898.
Hutchinson, M. C., E. F. Cagua, J. A. Balbuena, D. B. Stouffer, and T. Poisot. 2017. paco: implementing procrustean approach to cophylogeny in R. Methods Ecol. Evol. 8:9312-940.
Jackson, A. P., C. A. Machado, N. Robbins, and E. A. Herre. 2008. Multi-locus phylogenetic analysis of neotropical figs does not support co-speciation with the pollinators: the importance of systematic scale in fig/wasp cophylogenetic studies. Symbiosis 45:57-72.
Janzen, D. H. 1979. How to be a fig. Annu. Rev. Ecol. Syst. 10:13-51.
Jousselin, E., J.-Y. Rasplus, and F. Kjellberg. 2003. Convergence and coevolution in a mutualism: evidence from a molecular phylogeny of Ficus. Evolution 57:1255-1269.
Jousselin, E., S. Van Noort, V. Berry, J.-Y. Rasplus, N. Rønsted, J. C. Erasmus, and J. M. Greeff. 2008. One fig to bind them all: host conservatism in a fig wasp community unraveled by cospeciation analyses among pollinating and nonpollinating fig wasps. Evolution 62:1777-1797.
Katoh, K., and D. M. Standley. 2013. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol. 30:772-780.
Kissling, W. D., C. Rahbek, and K. Böhning-Gaese. 2007. Food plant diversity as broad-scale determinant of avian frugivore richness. Proc. R. Soc. Lond. B: Biol. Sci. 274:799-808.
Korine, C., E. K. Kalko, and E. A. Herre. 2000. Fruit characteristics and factors affecting fruit removal in a panamanian community of strangler figs. Oecologia 123:560-568.
Kubatko, L. S., and J. H. Degnan. 2007. Inconsistency of phylogenetic estimates from concatenated data under coalescence. Syst. Biol. 56:17-24.
Lambert, F. R., and A. G. Marshall. 1991. Keystone characteristics of bird-dispersed Ficus in a Malaysian lowland rain forest. J. Ecol. 79:793-809.
Legendre, P., Y. Desdevises, and E. Bazin. 2002. A statistical test for host-parasite coevolution. Syst. Biol. 51:217-234.
Lopez-Vaamonde, C., N. Wikström, K. M. Kjer, G. D. Weiblen, J. Y. Rasplus, C. A. Machado, and J. M. Cook. 2009. Molecular dating and biogeography of fig-pollinating wasps. Mol. Phylogenet. Evol. 52:715-726.
Machado, A. F. P., N. Rønsted, S. Bruun-Lund, R. A. S. Pereira, and L. P. de Queiroz. 2018. Atlantic forests to the all Americas: biogeographical history and divergence times of Neotropical Ficus (Moraceae). Mol. Phylogenet. Evol. 122:46-58.
Machado, C. A., E. Jousselin, F. Kjellberg, S. G. Compton, and E. A. Herre. 2001. Phylogenetic relationships, historical biogeography and character evolution of fig-pollinating wasps. Proc. R. Soc. Lond. B: Biol. Sci. 268:685-694.
Machado, C. A., N. Robbins, M. T. P. Gilbert, and E. A. Herre. 2005. Critical review of host specificity and its coevolutionary implications in the fig/fig-wasp mutualism. Proc. Natl. Acad. Sci. USA 102:6558-6565.
Marussich, W. A., and C. A. Machado. 2007. Host-specificity and coevolution among pollinating and nonpollinating new world fig wasps. Mol. Ecol. 16:1925-1946.
McCormack, J. E., B. C. Faircloth, N. G. Crawford, P. A. Gowaty, R. T. Brumfield, and T. C. Glenn. 2012. Ultraconserved elements are novel phylogenomic markers that resolve placental mammal phylogeny when combined with species-tree analysis. Genome Res. 22:746-754.
Moe, A. M., and G. D. Weiblen. 2012. Pollinator-mediated reproductive isolation among dioecious fig species (Ficus, Moraceae). Evolution 66:3710-3721.
Molbo, D., C. A. Machado, J. G. Sevenster, L. Keller, and E. A. Herre. 2003. Cryptic species of fig-pollinating wasps: implications for the evolution of the fig-wasp mutualism, sex allocation, and precision of adaptation. Proc. Natl. Acad. Sci. USA 100:5867-5872.
Nason, J. D., E. A. Herre, and J. L. Hamrick. 1998. The breeding structure of a tropical keystone plant resource. Nature 391:685-687.
Nefdt, R. J. C., and S. G. Compton. 1996. Regulation of seed and pollinator production in the fig-fig wasp mutualism. J. Anim. Ecol. 65:170-182.
Ogilvie, H. A., R. R. Bouckaert, and A. J. Drummond. 2017. StarBEAST2 brings faster species tree inference and accurate estimates of substitution rates. Mol. Biol. Evol. 34:2101-2114.
Page, R. D., 1994a. Maps between trees and cladistic analysis of historical associations among genes, organisms, and areas. Syst. Biol. 43:58-77.
Page, R. D. 1994b. Parallel phylogenies: reconstructing the history of host-parasite assemblages. Cladistics 10:155-173.
Piatscheck, F., J. Van Goor, D. D. Houston, and J. D. Nason. 2018. Ecological factors associated with pre-dispersal predation of fig seeds and wasps by fig-specialist lepidopteran larvae. Acta Oecol. 90:151-159.
Proffit, M., C. Chen, C. Soler, J.-M. Bessière, B. Schatz, and M. Hossaert-McKey. 2009. Can chemical signals, responsible for mutualistic partner encounter, promote the specific exploitation of nursery pollination mutualisms?-Tthe case of figs and fig wasps. Entomol. Exp. Appl. 131:46-57.
Rambaut, A., A. J. Drummond, D. Xie, G. Baele, and M. A. Suchard. 2018. Posterior summarization in Bayesian phylogenetics using Tracer 1.7. Syst. Biol. 67:901-904.
Ramírez, W. 1970. Host specificity of fig wasps (Agaonidae). Evolution 24:680-691.
Robert, C. P., J.-M. Cornuet, J.-M. Marin, and N. S. Pillai. 2011. Lack of confidence in approximate Bayesian computation model choice. Proc. Natl. Acad. Sci. USA 108:15112-15117.
Rodriguez, L. J., A. Bain, L.-S. Chou, L. Conchou, A. Cruaud, R. Gonzales, M. Hossaert-McKey, J.-Y. Rasplus, H.-Y. Tzeng, and F. Kjellberg. 2017. Diversification and spatial structuring in the mutualism between Ficus septica and its pollinating wasps in insular South East Asia. BMC Evol. Biol. 17:207.
Ronquist, F. 2003. Parsimony analysis of coevolving species associations. Pp. 22-64 in R. D. M. Page, ed. Tangled trees: phylogeny, cospeciation and coevolution. Univ. of Chicago Press, Chicago, IL.
Rønsted, N., G. D. Weiblen, J. M. Cook, N. Salamin, C. A. Machado, and V. Savolainen. 2005. 60 million years of co-divergence in the fig-wasp symbiosis. Proc. R. Soc. Lond. B: Biol. Sci. 272:2593-2599.
Sanmartín, I., and F. Ronquist. 2002. New solutions to old problems: widespread taxa, redundant distributions and missing areas in event-based biogeography. Anim. Biodivers. Conserv. 25:75-93.
Stadler, T. 2011. Simulating trees with a fixed number of extant species. Syst. Biol. 60:676-684.
Starrett, J., S. Derkarabetian, M. Hedin, R. W. Bryson, J. E. McCormack, and B. C. Faircloth. 2017. High phylogenetic utility of an ultraconserved element probe set designed for Arachnida. Mol. Ecol. Resour. 17:812-823.
Swofford, D. L. 2003. PAUP*: phylogenetic analysis using parsimony (*and other methods). Sinauer Associates, Sunderland, MA.
Szöllősi, G. J., B. Boussau, S. S. Abby, E. Tannier, and V. Daubin. 2012. Phylogenetic modeling of lateral gene transfer reconstructs the pattern and relative timing of speciations. Proc. Natl. Acad. Sci. USA 109:17513-17518.
Szöllősi, G. J., W. Rosikiewicz, B. Boussau, E. Tannier, and V. Daubin, 2013a. Efficient exploration of the space of reconciled gene trees. Syst. Biol. 62:901-912.
Szöllősi, G. J., E. Tannier, N. Lartillot, and V. Daubin, 2013b. Lateral gene transfer from the dead. Syst. Biol. 62:386-397.
Terborgh, J. 1986. Keystone plant resources in the tropical forest. Pp. 330-344 in I. Soul and E. Michael, eds. Conservation biology: the source of scarcity and diversity. Sinauer Associates, Sunderland, MA.
Thompson, J. N. 1994. The coevolutionary process. Univ. of Chicago Press, Chicago, IL.
Van Goor, J., F. Piatscheck, D. D. Houston, and J. D. Nason. 2018. Figs, pollinators, and parasites: a longitudinal study of the effects of nematode infection on fig wasp fitness. Acta Oecol. 90:140-150.
de Vienne, D., G. Refrégier, M. López-Villavicencio, A. Tellier, M. Hood, and T. Giraud. 2013. Cospeciation vs host-shift speciation: methods for testing, evidence from natural associations and relation to coevolution. New Phytol. 198:347-385.
Wang, G., C. H. Cannon, and J. Chen. 2016. Pollinator sharing and gene flow among closely related sympatric dioecious fig taxa. Proc. R. Soc. Lond. B: Biol. Sci. 283:20152963.
Weiblen, G. D. 2002. How to be a fig wasp. Annu. Rev. Entomol. 47:299-330.
Weiblen, G. D 2004 Correlated evolution in fig pollination. Syst. Biol. 53:128-139.
Weiblen, G. D., and G. L. Bush. 2002. Speciation in fig pollinators and parasites. Mol. Ecol. 11:1573-1578.
West, S. A., E. A. Herre, D. M. Windsor, and P. R. Green. 1996. The ecology and evolution of the new world non-pollinating fig wasp communities. J. Biogeogr. 23:447-458.
Wiebes, J. T. 1979. Co-evolution of figs and their insect pollinators. Annu. Rev. Ecol. Syst. 10:1-12.
Yang, L.-Y., C. A. Machado, X.-D. Dang, Y.-Q. Peng, D.-R. Yang, D.-Y. Zhang, and W.-J. Liao. 2015. The incidence and pattern of copollinator diversification in dioecious and monoecious figs. Evolution 69:294-304.
Yu, H., E. Tian, L. Zheng, X. Deng, Y. Cheng, L. Chen, W. Wu, W. Tanming, D. Zhang, S. G. Compton, et al. 2019. Multiple parapatric pollinators have radiated across a continental fig tree displaying clinal genetic variation. Mol. Ecol. 28:2391-2405.
معلومات مُعتمدة: DEB-1556853 International National Science Foundation
فهرسة مساهمة: Keywords: Ficus; Pegoscapus; RADseq; host switching; obligate mutualism; ultraconserved elements
سلسلة جزيئية: Dryad 10.5061/dryad.423q544
تواريخ الأحداث: Date Created: 20190725 Date Completed: 20200709 Latest Revision: 20200709
رمز التحديث: 20240628
DOI: 10.1111/evo.13809
PMID: 31339553
قاعدة البيانات: MEDLINE
الوصف
تدمد:1558-5646
DOI:10.1111/evo.13809