دورية أكاديمية

Atheroprotective roles of smooth muscle cell phenotypic modulation and the TCF21 disease gene as revealed by single-cell analysis.

التفاصيل البيبلوغرافية
العنوان: Atheroprotective roles of smooth muscle cell phenotypic modulation and the TCF21 disease gene as revealed by single-cell analysis.
المؤلفون: Wirka RC; Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, USA.; Stanford Cardiovascular Institute, Stanford, CA, USA., Wagh D; Stanford Functional Genomics Facility, Stanford University School of Medicine, Stanford, CA, USA., Paik DT; Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, USA.; Stanford Cardiovascular Institute, Stanford, CA, USA., Pjanic M; Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, USA.; Stanford Cardiovascular Institute, Stanford, CA, USA., Nguyen T; Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, USA.; Stanford Cardiovascular Institute, Stanford, CA, USA., Miller CL; Center for Public Health Genomics, Department of Public Health Sciences, University of Virginia, Charlottesville, VA, USA., Kundu R; Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, USA.; Stanford Cardiovascular Institute, Stanford, CA, USA., Nagao M; Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, USA.; Stanford Cardiovascular Institute, Stanford, CA, USA., Coller J; Stanford Functional Genomics Facility, Stanford University School of Medicine, Stanford, CA, USA., Koyano TK; Department of Cardiothoracic Surgery, Stanford University School of Medicine, Stanford, CA, USA., Fong R; Department of Cardiothoracic Surgery, Stanford University School of Medicine, Stanford, CA, USA., Woo YJ; Department of Cardiothoracic Surgery, Stanford University School of Medicine, Stanford, CA, USA., Liu B; Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA., Montgomery SB; Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA., Wu JC; Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, USA.; Stanford Cardiovascular Institute, Stanford, CA, USA., Zhu K; Department of Neurology, University of Arizona, Tucson, AZ, USA.; Center for Innovation in Brain Science, University of Arizona, Tucson, AZ, USA., Chang R; Department of Neurology, University of Arizona, Tucson, AZ, USA.; Center for Innovation in Brain Science, University of Arizona, Tucson, AZ, USA., Alamprese M; Department of Neurology, University of Arizona, Tucson, AZ, USA.; Center for Innovation in Brain Science, University of Arizona, Tucson, AZ, USA., Tallquist MD; Center for Cardiovascular Research, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI, USA., Kim JB; Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, USA.; Stanford Cardiovascular Institute, Stanford, CA, USA., Quertermous T; Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, USA. tomq1@stanford.edu.; Stanford Cardiovascular Institute, Stanford, CA, USA. tomq1@stanford.edu.
المصدر: Nature medicine [Nat Med] 2019 Aug; Vol. 25 (8), pp. 1280-1289. Date of Electronic Publication: 2019 Jul 29.
نوع المنشور: Journal Article; Research Support, N.I.H., Extramural
اللغة: English
بيانات الدورية: Publisher: Nature Publishing Company Country of Publication: United States NLM ID: 9502015 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1546-170X (Electronic) Linking ISSN: 10788956 NLM ISO Abbreviation: Nat Med Subsets: MEDLINE
أسماء مطبوعة: Publication: New York Ny : Nature Publishing Company
Original Publication: New York, NY : Nature Pub. Co., [1995-
مواضيع طبية MeSH: Basic Helix-Loop-Helix Transcription Factors/*genetics , Coronary Artery Disease/*prevention & control , Myocytes, Smooth Muscle/*physiology , Single-Cell Analysis/*methods, Animals ; Basic Helix-Loop-Helix Transcription Factors/physiology ; Cells, Cultured ; Humans ; Mice ; Mice, Inbred C57BL ; Osteoprotegerin/genetics ; Phenotype ; Polymorphism, Single Nucleotide ; Sequence Analysis, RNA
مستخلص: In response to various stimuli, vascular smooth muscle cells (SMCs) can de-differentiate, proliferate and migrate in a process known as phenotypic modulation. However, the phenotype of modulated SMCs in vivo during atherosclerosis and the influence of this process on coronary artery disease (CAD) risk have not been clearly established. Using single-cell RNA sequencing, we comprehensively characterized the transcriptomic phenotype of modulated SMCs in vivo in atherosclerotic lesions of both mouse and human arteries and found that these cells transform into unique fibroblast-like cells, termed 'fibromyocytes', rather than into a classical macrophage phenotype. SMC-specific knockout of TCF21-a causal CAD gene-markedly inhibited SMC phenotypic modulation in mice, leading to the presence of fewer fibromyocytes within lesions as well as within the protective fibrous cap of the lesions. Moreover, TCF21 expression was strongly associated with SMC phenotypic modulation in diseased human coronary arteries, and higher levels of TCF21 expression were associated with decreased CAD risk in human CAD-relevant tissues. These results establish a protective role for both TCF21 and SMC phenotypic modulation in this disease.
References: Davies, M. J., Richardson, P. D., Woolf, N., Katz, D. R. & Mann, J. Risk of thrombosis in human atherosclerotic plaques: role of extracellular lipid, macrophage, and smooth muscle cell content. Br. Heart J. 69, 377–381 (1993). (PMID: 10.1136/hrt.69.5.377)
Libby, P. & Aikawa, M. Stabilization of atherosclerotic plaques: new mechanisms and clinical targets. Nat. Med. 8, 1257–1262 (2002). (PMID: 10.1038/nm1102-1257)
Ross, R. & Glomset, J. A. Atherosclerosis and the arterial smooth muscle cell: proliferation of smooth muscle is a key event in the genesis of the lesions of atherosclerosis. Science 180, 1332–1339 (1973). (PMID: 10.1126/science.180.4093.1332)
Bennett, M. R., Sinha, S. & Owens, G. K. Vascular smooth muscle cells in atherosclerosis. Circ. Res. 118, 692–702 (2016). (PMID: 10.1161/CIRCRESAHA.115.306361)
Gomez, D. & Owens, G. K. Smooth muscle cell phenotypic switching in atherosclerosis. Cardiovasc. Res. 95, 156–164 (2012). (PMID: 10.1093/cvr/cvs115)
Shankman, L. S. et al. KLF4-dependent phenotypic modulation of smooth muscle cells has a key role in atherosclerotic plaque pathogenesis. Nat. Med. 21, 628–637 (2015). (PMID: 10.1038/nm.3866)
Gomez, D., Shankman, L. S., Nguyen, A. T. & Owens, G. K. Detection of histone modifications at specific gene loci in single cells in histological sections. Nat. Methods 10, 171–177 (2013). (PMID: 10.1038/nmeth.2332)
Schunkert, H. et al. Large-scale association analysis identifies 13 new susceptibility loci for coronary artery disease. Nat. Genet. 43, 333–338 (2011). (PMID: 10.1038/ng.784)
Miller, C. L. et al. Disease-related growth factor and embryonic signaling pathways modulate an enhancer of TCF21 expression at the 6q23.2 coronary heart disease locus. PLoS Genet. 9, e1003652 (2013). (PMID: 10.1371/journal.pgen.1003652)
Miller, C. L. et al. Coronary heart disease-associated variation in TCF21 disrupts a miR-224 binding site and miRNA-mediated regulation. PLoS Genet. 10, e1004263 (2014). (PMID: 10.1371/journal.pgen.1004263)
Dettman, R. W., Denetclaw, W. Jr, Ordahl, C. P. & Bristow, J. Common epicardial origin of coronary vascular smooth muscle, perivascular fibroblasts, and intermyocardial fibroblasts in the avian heart. Dev. Biol. 193, 169–181 (1998). (PMID: 10.1006/dbio.1997.8801)
Winter, E. M. & Gittenberger-de Groot, A. C. Epicardium-derived cells in cardiogenesis and cardiac regeneration. Cell. Mol. Life Sci. 64, 692–703 (2007). (PMID: 10.1007/s00018-007-6522-3)
Acharya, A. et al. The bHLH transcription factor Tcf21 is required for lineage-specific EMT of cardiac fibroblast progenitors. Development 139, 2139–2149 (2012). (PMID: 10.1242/dev.079970)
Nurnberg, S. T. et al. Coronary artery disease associated transcription factor TCF21 regulates smooth muscle precursor cells that contribute to the fibrous cap. PLoS Genet. 11, e1005155 (2015). (PMID: 10.1371/journal.pgen.1005155)
Herring, B. P., Hoggatt, A. M., Burlak, C. & Offermanns, S. Previously differentiated medial vascular smooth muscle cells contribute to neointima formation following vascular injury. Vasc. Cell 6, 21 (2014). (PMID: 10.1186/2045-824X-6-21)
Wirth, A. et al. G12-G13-LARG-mediated signaling in vascular smooth muscle is required for salt-induced hypertension. Nat. Med. 14, 64–68 (2008). (PMID: 10.1038/nm1666)
Madisen, L. et al. A robust and high-throughput Cre reporting and characterization system for the whole mouse brain. Nat. Neurosci. 13, 133–140 (2010). (PMID: 10.1038/nn.2467)
Zheng, G. X. et al. Massively parallel digital transcriptional profiling of single cells. Nat. Commun. 8, 14049 (2017). (PMID: 10.1038/ncomms14049)
Dobnikar, L. et al. Disease-relevant transcriptional signatures identified in individual smooth muscle cells from healthy mouse vessels. Nat. Commun. 9, 4567 (2018). (PMID: 10.1038/s41467-018-06891-x)
Kitchen, C. M., Cowan, S. L., Long, X. & Miano, J. M. Expression and promoter analysis of a highly restricted integrin alpha gene in vascular smooth muscle. Gene 513, 82–89 (2013). (PMID: 10.1016/j.gene.2012.10.073)
Stoeckius, M. et al. Simultaneous epitope and transcriptome measurement in single cells. Nat. Methods 14, 865–868 (2017). (PMID: 10.1038/nmeth.4380)
Jacobsen, K. et al. Diverse cellular architecture of atherosclerotic plaque derives from clonal expansion of a few medial SMCs. JCI Insight 2, 95890 (2017). (PMID: 10.1172/jci.insight.95890)
Vengrenyuk, Y. et al. Cholesterol loading reprograms the microRNA-143/145–myocardin axis to convert aortic smooth muscle cells to a dysfunctional macrophage-like phenotype. Arterioscler. Thromb. Vasc. Biol. 35, 535–546 (2015). (PMID: 10.1161/ATVBAHA.114.304029)
Sazonova, O. et al. Characterization of TCF21 downstream target regions identifies a transcriptional network linking multiple independent coronary artery disease loci. PLoS Genet. 11, e1005202 (2015). (PMID: 10.1371/journal.pgen.1005202)
Franzen, O. et al. Cardiometabolic risk loci share downstream cis- and trans-gene regulation across tissues and diseases. Science 353, 827–830 (2016). (PMID: 10.1126/science.aad6970)
Clement, N. et al. Notch3 and IL-1β exert opposing effects on a vascular smooth muscle cell inflammatory pathway in which NF-κB drives crosstalk. J. Cell Sci. 120, 3352–3361 (2007). (PMID: 10.1242/jcs.007872)
Pidkovka, N. A. et al. Oxidized phospholipids induce phenotypic switching of vascular smooth muscle cells in vivo and in vitro. Circ. Res. 101, 792–801 (2007). (PMID: 10.1161/CIRCRESAHA.107.152736)
Dandre, F. & Owens, G. K. Platelet-derived growth factor-BB and Ets-1 transcription factor negatively regulate transcription of multiple smooth muscle cell differentiation marker genes. Am. J. Physiol. Heart Circ. Physiol. 286, H2042–H2051 (2004). (PMID: 10.1152/ajpheart.00625.2003)
Rong, J. X., Shapiro, M., Trogan, E. & Fisher, E. A. Transdifferentiation of mouse aortic smooth muscle cells to a macrophage-like state after cholesterol loading. Proc. Natl Acad. Sci. USA 100, 13531–13536 (2003). (PMID: 10.1073/pnas.1735526100)
Rong, J. X., Berman, J. W., Taubman, M. B. & Fisher, E. A. Lysophosphatidylcholine stimulates monocyte chemoattractant protein-1 gene expression in rat aortic smooth muscle cells. Arterioscler. Thromb. Vasc. Biol. 22, 1617–1623 (2002). (PMID: 10.1161/01.ATV.0000035408.93749.71)
Allahverdian, S., Chehroudi, A. C., McManus, B. M., Abraham, T. & Francis, G. A. Contribution of intimal smooth muscle cells to cholesterol accumulation and macrophage-like cells in human atherosclerosis. Circulation 129, 1551–1559 (2014). (PMID: 10.1161/CIRCULATIONAHA.113.005015)
Kanisicak, O. et al. Genetic lineage tracing defines myofibroblast origin and function in the injured heart. Nat. Commun. 7, 12260 (2016). (PMID: 10.1038/ncomms12260)
Chappell, J. et al. Extensive proliferation of a subset of differentiated, yet plastic, medial vascular smooth muscle cells contributes to neointimal formation in mouse injury and atherosclerosis models. Circ. Res. 119, 1313–1323 (2016). (PMID: 10.1161/CIRCRESAHA.116.309799)
Butler, A., Hoffman, P., Smibert, P., Papalexi, E. & Satija, R. Integrating single-cell transcriptomic data across different conditions, technologies, and species. Nat. Biotechnol. 36, 411–420 (2018). (PMID: 10.1038/nbt.4096)
Satija, R., Farrell, J. A., Gennert, D., Schier, A. F. & Regev, A. Spatial reconstruction of single-cell gene expression data. Nat. Biotechnol. 33, 495–502 (2015). (PMID: 10.1038/nbt.3192)
Kasowski, M. et al. Variation in transcription factor binding among humans. Science 328, 232–235 (2010). (PMID: 10.1126/science.1183621)
Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 25, 1754–1760 (2009). (PMID: 10.1093/bioinformatics/btp324)
Zhang, Y. et al. Model-based analysis of ChIP-Seq (MACS). Genome Biol. 9, R137 (2008). (PMID: 10.1186/gb-2008-9-9-r137)
معلومات مُعتمدة: R01 HL109512 United States HL NHLBI NIH HHS; R01 HL144067 United States HL NHLBI NIH HHS; R01 DK107437 United States DK NIDDK NIH HHS; R01 HL139478 United States HL NHLBI NIH HHS; K08 HL133375 United States HL NHLBI NIH HHS; R01 HL103635 United States HL NHLBI NIH HHS; S10 OD018220 United States OD NIH HHS; S10 RR025518 United States RR NCRR NIH HHS; R33 HL120757 United States HL NHLBI NIH HHS; R21 HL120757 United States HL NHLBI NIH HHS; F32 HL129670 United States HL NHLBI NIH HHS; R01 HL148239 United States HL NHLBI NIH HHS; R01 HL134817 United States HL NHLBI NIH HHS; R01 HL141371 United States HL NHLBI NIH HHS; R00 HL125912 United States HL NHLBI NIH HHS; R01 HL145708 United States HL NHLBI NIH HHS; P30 DK116074 United States DK NIDDK NIH HHS
المشرفين على المادة: 0 (Basic Helix-Loop-Helix Transcription Factors)
0 (Osteoprotegerin)
0 (TCF21 protein, human)
0 (TNFRSF11B protein, human)
تواريخ الأحداث: Date Created: 20190731 Date Completed: 20191106 Latest Revision: 20220420
رمز التحديث: 20231215
مُعرف محوري في PubMed: PMC7274198
DOI: 10.1038/s41591-019-0512-5
PMID: 31359001
قاعدة البيانات: MEDLINE
الوصف
تدمد:1546-170X
DOI:10.1038/s41591-019-0512-5