دورية أكاديمية

Calcicole behaviour of Callisthene fasciculata Mart., an Al-accumulating species from the Brazilian Cerrado.

التفاصيل البيبلوغرافية
العنوان: Calcicole behaviour of Callisthene fasciculata Mart., an Al-accumulating species from the Brazilian Cerrado.
المؤلفون: de Souza MC; Botany Department, Institute of Biological Sciences, University of Brasília, Brasília, Brazil., Williams TCR; Botany Department, Institute of Biological Sciences, University of Brasília, Brasília, Brazil., Poschenrieder C; Autonomous University of Barcelona, Bellaterra, Spain., Jansen S; Ulm University, Ülm, Germany., Pinheiro MHO; Federal University of Uberlandia, Ituiutaba, Brazil., Soares IP; EMBRAPA Agroenergy, Brasilia, Brazil., Franco AC; Botany Department, Institute of Biological Sciences, University of Brasília, Brasília, Brazil.
المصدر: Plant biology (Stuttgart, Germany) [Plant Biol (Stuttg)] 2020 Jan; Vol. 22 (1), pp. 30-37. Date of Electronic Publication: 2019 Aug 30.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Wiley Country of Publication: England NLM ID: 101148926 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1438-8677 (Electronic) Linking ISSN: 14358603 NLM ISO Abbreviation: Plant Biol (Stuttg) Subsets: MEDLINE
أسماء مطبوعة: Publication: Oxford, England : Wiley
Original Publication: Stuttgart : New York, NY : G. Thieme Verlag ; Thieme New York, c1999-
مواضيع طبية MeSH: Aluminum*/metabolism , Aluminum*/toxicity , Myrtales*/drug effects , Myrtales*/metabolism , Soil Pollutants*/toxicity, Brazil ; Plant Roots/drug effects ; Plant Roots/metabolism ; Seedlings/drug effects ; Seedlings/metabolism ; Soil/chemistry
مستخلص: Most aluminium (Al)-accumulating species are found on soils with high Al saturation and low Ca availability (Ca poor). Callisthene fasciculata Mart. (Vochysiaceae), however, is an Al-accumulating tree restricted to Ca-rich soils with low Al saturation in the Brazilian Cerrado savanna. Here we tested its calcicole behaviour, and the possible role of organic acids in detoxification of Al during the early stages of plant development. We assessed growth, dry mass, nutrients, Al and organic acids in seedlings grown for 50 days on two contrasting Cerrado soils; one with high Ca concentrations and low Al saturation and the other with low Ca availability and high Al saturation. Relative to plants on Ca-rich soil, plants on Ca-poor soil had necrotic spots and bronzing of leaves. Roots and shoots contained reduced concentrations of P and Cu, but higher concentrations of Fe, Al and citrate. Despite lower concentrations in the soil, Ca and Mg increased in shoots. Shoot concentrations of oxalate were also higher. We confirmed C. fasciculata as an Al-accumulating species with calcicole behaviour. The increased concentrations of organic acids in plants with higher Al accumulation suggest that high availability of soluble Al does not prevent occurrence of this species on soils with high Al saturation. Instead, the absence of C. fasciculata from Ca-poor soils is probably due to imbalances in tissue Fe, Cu and Zn imposed by this soil type.
(© 2019 German Society for Plant Sciences and The Royal Botanical Society of the Netherlands.)
References: Allen S.E. (1989) Chemical analysis of ecological materials. Blackwell Scientific, Oxford, UK.
Asch F., Becker M., Kpongor D.S. (2005) A quick and efficient screen for resistance to iron toxicity in lowland rice. Journal of Plant Nutrition and Soil Science, 168, 764-773.
Brunner I., Sperisen C. (2013) Aluminum exclusion and aluminum tolerance in woody plants. Frontiers in Plant Sciences, 4, 1-12.
Clarkson D.T. (1966) Aluminium tolerance in species within the genus Agrostis. Journal of Ecology, 54, 167-178.
Epstein E., Bloom A.J. (Eds). (2005) Inorganic components of plants (Chapter 3). In: Mineral nutrition of plants: principles and perspectives, 2nd edn. Sinauer, Sunderland, MA, USA, 58-65.
Fiehn O., Kopka J., Trethewey R.N., Willmitzer L. (2000) Identification of uncommon plant metabolites based on calculation of elemental compositions using gas chromatography and quadrupole mass spectrometry. Analytical Chemistry, 72, 3573-3580.
Frei M., Wang Y., Ismail A.M., Wissuwa M. (2010) Biochemical factors conferring hoot tolerance to oxidative stress in rice grown in low zinc soil. Functional Plant Biology, 37, 74-84.
Haridasan M. (1982) Aluminium accumulation by some cerrado native species of central Brazil. Plant and Soil, 65, 265-273.
Haridasan M. (1988) Performance of Miconia albicans (Sw.) Triana, an aluminium accumulating species in acidic and calcareous soils. Communications in Soil Sciences & Plant Analysis, 19, 1091-1103.
Haridasan M. (2008) Nutritional adaptations of native plants of the cerrado biome in acid soils. Brazilian Journal of Plant Physiology, 20, 183-195.
Haridasan M., Araújo G.M. (1988) Aluminium-accumulating species in two forest communities in the cerrado region of central Brazil. Forest Ecology and Management, 24, 15-26.
Heldt H.W., Piechulla B. (2015) Pflanzenbiochemie, 5th edn. Springer, Berlin, Germany.
Igamberdiev A.U., Eprintsev A.T. (2016) Organic acids: the pools of fixed carbon involved in redox regulation and energy balance in higher plants. Frontiers in Plant Science, 7, 1042.
Jansen S., Broadley M.R., Robbrecht E., Smets E. (2002) Aluminum hyperaccumulation in Angiosperms: a review of its phylogenetic significance. Botanical Review, 68, 235-269.
Lee J.A. (1998) The calcicole-calcifuge problem revisited. Advances in Botanical Research, 29, 1-30.
Lindsay W.L., Norvell W.A. (1978) Development of a DTPA soil test for zinc, iron, manganese, and copper. Soil Science Society of America Journal, 42, 421-428.
Lommen A., Kools K.J. (2012) MetAlign 3.0: performance enhancement by efficient use of advances in computer hardware. Metabolomics, 8, 719-726.
Lux H.B., Cumming J.R. (2001) Mycorrhizae confer aluminum resistance to tulip-poplar seedlings. Canadian Journal of Forest Research, 31, 694-702.
Meira-Neto J.A., Tolentino G.S., Silva M.C.N.A., Neri A.V., Gastauer M., Magno L.F.S., Yuste J.C., Valladares F. (2017) Functional antagonism between nitrogen-fixing leguminous trees and calcicole-drought-tolerant trees in the Cerrado. Acta Botanica Brasilica, 31, 11-18.
Metali F., Salim K.A., Burslem D.F.R.P. (2012) Evidence of foliar aluminium accumulation in local, regional and global datasets of wild plants. New Phytologist, 193, 637-649.
Palmer C.M., Guerinot M.L. (2009) Facing the challenges of Cu, Fe and Zn homeostasis in plants. Nature Chemical Biology, 5, 333-340.
Pereira C.G., Clode P.L., Oliveira R.S., Lambers H. (2018) Eudicots from severely phosphorus-impoverished environments preferentially allocate phosphorus to their mesophyll. New Phytologist, 218, 959-973.
Poschenrieder C., Gunsé B., Corrales I., Barceló J. (2008) A glance into aluminum toxicity and resistance. Science of the Total Environment, 400, 356-368.
Poschenrieder C., Fernández J.A., Rubio L., Pérez L., Terés J., Barceló J. (2018) Transport and use of bicarbonate in plants: current knowledge and challenges ahead. International Journal of Molecular Sciences, 19, 1352. https://doi.org/10.3390/ijms19051352.
R Core Team (2017) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria https://www.R-project.org/.
van Raij B., Quaggio J.A., Silva N.M. (1986) Extraction of phosphorus, potassium, calcium, and magnesium from soils by an ion-exchange resin procedure. Communications in Soil Science and Plant Analysis, 17, 547-566.
Ratter J.A., Bridgewater S., Ribeiro J.F. (2003) Analysis of floristic composition of the Brazilian cerrado vegetation. III. Comparison of the woody vegetation of 376 areas. Edinburgh Journal of Botany, 60, 57-109.
Rorison I.H. (1960) The calcicole-calcifuge problem. II. The effects of mineral nutrition in seedling growth in the field. Journal of Ecology, 48, 679-688.
Shen R.F., Iwashita T., Ma J.F. (2004) Form of Al changes with Al concentration in leaves of buckwheat. Journal of Experimental Botany, 55, 131-136.
de Souza M.C., Habermann G., Amaral C.L., Rosa A.L., Pinheiro M.H.O., Da Costa F.B. (2017) Vochysia tucanorum Mart.: an aluminum-accumulating species evidencing calcifuge behavior. Plant and Soil, 419, 377-389.
de Souza M.C., Scalon M.C., Poschenrieder C., Tolrà R., Venâncio T., Teixeira S.P., Da Costa F.B. (2018a) Mechanisms of storage and detoxifcation of Al in two tropical mistletoes. Environmental and Experimental Botany, 150, 37-45.
de Souza M.C., Scalon M.C., Poschenrieder C., Tolrà R., Venâncio T., Teixeira S.P., Da Costa F.B. (2018b) Aluminium detoxification in facultative (Passovia ovata (Pohl ex DC.) Kuijt and Struthanthus polyanthus Mart. - Loranthaceae) and dependent (Psittacanthus robustus (Mart.) Marloth - Loranthaceae) Al-accumulating mistletoe species from the Brazilian savanna. Phytochemistry, 153, 58-63.
Stein R.J., Lopes S.I.F.G., Fett J.P. (2014) Iron toxicity in field-cultivated rice: contrasting tolerance mechanisms in distinct cultivars. Theoretical and Experimental Plant Physiology, 26, 135-146.
USDA - United States Department of Agriculture (1999) Soil taxonomy: a basic system of soil classification for making and interpreting soil surveys. USDA, Washington, DC, USA: 870 pp.
Vondráčková S., Száková J., Drábek O., Tejnecký V., Hejcman M., Müllerová V., Tlustoš P. (2015) Aluminium uptake and translocation in Al hyperaccumulator Rumex obtusifolius is affected by low-molecular-weight organic acids content and soil pH. PLoS ONE, 10, e0123351. https://doi.org/10.1371/journal.pone.0123351.
Watanabe T., Osaki M. (2002) Mechanisms of adaptation to high aluminum condition in native plant species growing in acid soils: a review. Communications in Soil Sciences & Plant Analysis, 33, 1247-1260.
Wu L.-B., Shhadi M.Y., Gregorio G., Matthus E., Becker M., Frei M. (2014) Genetic and physiological analysis of tolerance to acute iron toxicity in rice. Rice, 7, 8. https://doi.org/10.1186/s12284-014-0008-3.
Yu L., Jiang J., Zhang C., Jiang L., Ye N., Lu Y., Yang G., Liu E., Peng C., He Z., Peng X. (2010) Glyoxylate rather than ascorbate is an efficient precursor for oxalate biosynthesis in rice. Journal of Experimental Botany, 61, 1625-1634.
معلومات مُعتمدة: 150643/2017-9 National Council for Scientific and Technological Development (CNPq); 308182/2015-4 National Council for Scientific and Technological Development (CNPq); 400562/2017-0 National Council for Scientific and Technological Development (CNPq)
فهرسة مساهمة: Keywords: Aluminium; calcium; copper; iron; phosphorus; zinc
المشرفين على المادة: 0 (Soil)
0 (Soil Pollutants)
CPD4NFA903 (Aluminum)
تواريخ الأحداث: Date Created: 20190802 Date Completed: 20200311 Latest Revision: 20200311
رمز التحديث: 20221213
DOI: 10.1111/plb.13036
PMID: 31368234
قاعدة البيانات: MEDLINE
الوصف
تدمد:1438-8677
DOI:10.1111/plb.13036