دورية أكاديمية

Analysis of how compliant layers and encapsulation affect power generated from piezoelectric stacked composites for bone healing medical devices.

التفاصيل البيبلوغرافية
العنوان: Analysis of how compliant layers and encapsulation affect power generated from piezoelectric stacked composites for bone healing medical devices.
المؤلفون: Cadel ES; Bioengineering Graduate Program, University of Kansas, Lawrence, Kansas., Frazer LL; Bioengineering Graduate Program, University of Kansas, Lawrence, Kansas., Krech ED; Bioengineering Graduate Program, University of Kansas, Lawrence, Kansas., Fischer KJ; Bioengineering Graduate Program, University of Kansas, Lawrence, Kansas.; Department of Mechanical Engineering, University of Kansas, Lawrence, Kansas., Friis EA; Bioengineering Graduate Program, University of Kansas, Lawrence, Kansas.; Department of Mechanical Engineering, University of Kansas, Lawrence, Kansas.
المصدر: Journal of biomedical materials research. Part A [J Biomed Mater Res A] 2019 Dec; Vol. 107 (12), pp. 2610-2618. Date of Electronic Publication: 2019 Aug 23.
نوع المنشور: Journal Article; Research Support, N.I.H., Extramural; Research Support, Non-U.S. Gov't
اللغة: English
بيانات الدورية: Publisher: John Wiley & Sons Country of Publication: United States NLM ID: 101234237 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1552-4965 (Electronic) Linking ISSN: 15493296 NLM ISO Abbreviation: J Biomed Mater Res A Subsets: MEDLINE
أسماء مطبوعة: Original Publication: Hoboken, NJ : John Wiley & Sons, c2002-
مواضيع طبية MeSH: Electric Power Supplies* , Prostheses and Implants*, Biocompatible Materials/*chemistry , Lead/*chemistry , Titanium/*chemistry , Zirconium/*chemistry, Electric Stimulation ; Finite Element Analysis ; Humans ; Walking ; Wound Healing
مستخلص: Use of piezoelectric materials to harvest energy from human motion is commonly investigated. Traditional piezoelectric materials are inefficient at low frequencies but composite structures can increase efficiency at these frequencies. Compliant layer adaptive composite stack (CLACS) is a new piezoelectric PZT (lead zirconate titanate) structure designed for orthopedic implants to use loads generated during walking to provide electrical stimulation for bone healing. The CLACS structure increases power efficiency and structural properties as compared to PZT alone. The purpose of this study was to investigate the effects of compliant layer and encapsulation thicknesses on strain-related parameters for CLACS predicted by finite element models. Percent changes in strain as compliant layer thickness increased were compared to percent changes in power experimentally produced by CLACS given similar geometries and loading conditions. Percent changes in PZT z-strain matched the trends for increases in experimental power, but was not directly proportional. PZT z-strain and radial strain increased as compliant layer and top and bottom encapsulation thickness increased. PZT z-strain and radial strain decreased as side encapsulation thickness increased for a normalized distributed force on the PZT. The overall goal of this study was to inform future design decisions regarding CLACS structures specifically for use in orthopedic implants.
(© 2019 Wiley Periodicals, Inc.)
References: Epoxy Technology.2016 Epoxy adhesive application guide [Internet]. Epoxy Technology, Inc. Available from: http://www.epotek.com/site/files/brochures/pdfs/adhesive_application_guide.pdf.
Epoxy Technology. 2019EPO-TEK 301 technical data sheet [Internet]. Epoxy Technology; Available from: http://www.epotek.com/site/administrator/components/com_products/assets/files/Style_Uploads/301.pdf.
Feenstra, J., Granstrom, J., & Sodano, H. (2008). Energy harvesting through a backpack employing a mechanically amplified piezoelectric stack. Mechanical Systems and Signal Processing, 22, 721-734.
Friis, E. (2017). Mechanical testing of orthopaedic implants (p. 274). Sawston, Cambridge, England: Woodhead Publishing.
Friis, E., Galvis, S., & Arnold, P. DC stimulation for spinal fusion with a piezoelectric composite material interbody implant: An ovine pilot study. Minneapolis, MN: Society for Biomaterials.
Goetzinger, N. C., Tobaben, E. J., Domann, J. P., Arnold, P. M., & Friis, E. A. (2016). Composite piezoelectric spinal fusion implant: Effects of stacked generators. Journal of Biomedical Materials Research. Part B, Applied Biomaterials, 104, 158-164.
Griffin, M., & Bayat, A. (2011). Electrical stimulation in bone healing: Critical analysis by evaluating levels of evidence. Eplasty, 11, e34.
Jaffe, B., Cook Jr., W. R., Jaffe, H. (1971). Piezoelectric Ceramics. New York: Academic Press.
Jones, R. M. (2014). Mechanics of composite materials (p. 538). Boca Raton, Florida, USA: CRC Press.
Khalifeh, J. M., Zohny, Z., Gamble, P., MacEwan, M., & Ray, W. Z. (2018). Electrical stimulation and bone healing: A review of current technology and clinical applications. IEEE Reviews in Biomedical Engineering, 11, 217-232.
Krech, E., Cadel, E., Barrett, R., & Friis, E. (2018). Effect of compliant layers within piezoelectric composites on power generation providing electrical stimulation in low frequency applications. Journal of the Mechanical Behavior of Biomedical Materials, 88, 340-345.
Kymissis J, Kendall C, Paradiso J, Gershenfeld N. Parasitic power harvesting in shoes. Digest of Papers. Second International Symposium on Wearable Computers (Cat. No.98EX215). 1998.
Li, H., Tian, C., & Deng, Z. D. (2014). Energy harvesting from low frequency applications using piezoelectric materials. Applied Physics Reviews, 1, 041301.
Maas, S. A., Ellis, B. J., Ateshian, G. A., & Weiss, J. A. (2012). FEBio: Finite elements for biomechanics. Journal of Biomechanical Engineering, 134, 011005-011010.
MatWeb. 2019Piezo Kinetics PKI 409E Navy Type I Lead Zirconate Titanate Piezoelectric [Internet]. Report No.: Data Sheet. Available from: http://www.matweb.com/search/DataSheet.aspx?MatGUID=7d992de23e964b0893e55a2565404eca&ckck=1.
Platt, S. R., Farritor, S., & Haider, H. (2005). On low-frequency electric power generation with PZT ceramics. IEEEASME Transactions on Mechatronics, 10, 240-252.
Priya, S. (2007). Advances in energy harvesting using low profile piezoelectric transducers. Journal of Electroceramics, 19, 167-184.
Shenck, N. S., & Paradiso, J. A. (2001). Energy scavenging with shoe-mounted Piezoelectrics. IEEE Micro, 21, 30-42.
STEMiNC. 2019Piezo Material Properties [Internet]. Steiner Martins Inc. Available from: http://www.steminc.com/piezo/PZ_property.asp.
Tobaben, N. E., Domann, J. P., Arnold, P. M., & Friis, E. A. (2014). Theoretical model of a piezoelectric composite spinal fusion interbody implant. Journal of Biomedical Materials Research. Part A, 102, 975-981.
Tressler, J. F., Alkoy, S., & Newnham, R. E. (1998). Piezoelectric sensors and sensor materials. Journal of Electroceramics, 2, 257-272.
Worden, K., Bullough, W. A., & Haywood, J. (2003, 292). Smart Technologies. Toh Tuck Link, Singapore: World Scientific.
معلومات مُعتمدة: R41 AR070088 United States RG CSR NIH HHS; International Madison and Lila Self Graduate Fellowship; R41 AR070088 United States RG CSR NIH HHS
فهرسة مساهمة: Keywords: bone healing; human powered implants; low frequency; piezoelectric composite; power generation
المشرفين على المادة: 0 (Biocompatible Materials)
12626-81-2 (lead titanate zirconate)
2P299V784P (Lead)
C6V6S92N3C (Zirconium)
D1JT611TNE (Titanium)
تواريخ الأحداث: Date Created: 20190804 Date Completed: 20200911 Latest Revision: 20200911
رمز التحديث: 20240628
DOI: 10.1002/jbm.a.36767
PMID: 31376314
قاعدة البيانات: MEDLINE
الوصف
تدمد:1552-4965
DOI:10.1002/jbm.a.36767