دورية أكاديمية

Sequence capture phylogenomics of historical ethanol-preserved museum specimens: Unlocking the rest of the vault.

التفاصيل البيبلوغرافية
العنوان: Sequence capture phylogenomics of historical ethanol-preserved museum specimens: Unlocking the rest of the vault.
المؤلفون: Derkarabetian S; Museum of Comparative Zoology, Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA., Benavides LR; Museum of Comparative Zoology, Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA., Giribet G; Museum of Comparative Zoology, Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA.
المصدر: Molecular ecology resources [Mol Ecol Resour] 2019 Nov; Vol. 19 (6), pp. 1531-1544. Date of Electronic Publication: 2019 Sep 18.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Blackwell Country of Publication: England NLM ID: 101465604 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1755-0998 (Electronic) Linking ISSN: 1755098X NLM ISO Abbreviation: Mol Ecol Resour Subsets: MEDLINE
أسماء مطبوعة: Original Publication: Oxford, England : Blackwell
مواضيع طبية MeSH: Birds/*genetics , Preservation, Biological/*methods , Sequence Analysis, DNA/*methods, Animals ; Biodiversity ; DNA/genetics ; Ethanol/chemistry ; Formaldehyde/chemistry ; Genomics/methods ; High-Throughput Nucleotide Sequencing/methods ; Insecta ; Mitochondria/genetics ; Museums ; Phylogeny ; Specimen Handling/methods
مستخلص: Natural history collections play a crucial role in biodiversity research, and museum specimens are increasingly being incorporated into modern genetics-based studies. Sequence capture methods have proven incredibly useful for phylogenomics, providing the additional ability to sequence historical museum specimens with highly degraded DNA, which until recently have been deemed less valuable for genetic work. The successful sequencing of ultraconserved elements (UCEs) from historical museum specimens has been demonstrated on multiple tissue types including dried bird skins, formalin-fixed squamates and pinned insects. However, no study has thoroughly demonstrated this approach for historical ethanol-preserved museum specimens. Alongside sequencing of "fresh" specimens preserved in >95% ethanol and stored at -80°C, we used extraction techniques specifically designed for degraded DNA coupled with sequence capture protocols to sequence UCEs from historical museum specimens preserved in 70%-80% ethanol and stored at room temperature, the standard for such ethanol-preserved museum collections. Across 35 fresh and 15 historical museum samples of the arachnid order Opiliones, an average of 345 UCE loci were included in phylogenomic matrices, with museum samples ranging from six to 495 loci. We successfully demonstrate the inclusion of historical ethanol-preserved museum specimens in modern sequence capture phylogenomic studies, show a high frequency of variant bases at the species and population levels, and from off-target reads successfully recover multiple loci traditionally sequenced in multilocus studies including mitochondrial loci and nuclear rRNA loci. The methods detailed in this study will allow researchers to potentially acquire genetic data from millions of ethanol-preserved museum specimens held in collections worldwide.
(© 2019 John Wiley & Sons Ltd.)
References: Abdelkrim, J., Aznar-Cormano, L., Fedosov, A. E., Kantor, Y. I., Lozouet, P., Phuong, P., … Puillandre, N. (2018). Exon-capture-based phylogeny and diversification of the venomous gastropods (Neogastropoda, Conoidea). Molecular Biology and Evolution, 35, 2355-2374. https://doi.org/10.1093/molbev/msy144.
Beaman, R. S., & Cellinese, N. (2012). Mass digitization of scientific collections: New opportunities to transform the use of biological specimens and underwrite biodiversity science. ZooKeys, 209, 7-17. https://doi.org/10.3897/zookeys.209.3313.
Bi, K., Linderoth, T., Vanderpool, D., Good, J. M., Nielsen, R., & Moritz, C. (2013). Unlocking the vault: Next-generation museum population genomics. Molecular Ecology, 22, 6018-6032. https://doi.org/10.1111/mec.12516.
Blagoderov, V., Kitching, I. J., Livermore, L., Simonsen, T. J., & Smith, V. S. (2012). No specimen left behind: Industrial scale digitization of natural history collections. ZooKeys, 209, 133-146. https://doi.org/10.3897/zookeys.209.3178.
Blaimer, B. B., LaPolla, J. S., Branstetter, M. G., Lloyd, M. W., & Brady, S. G. (2016). Phylogenomics, biogeography and diversification of obligate mealybug-tending ants in the genus Acropyga. Molecular Phylogenetics and Evolution, 102, 20-29. https://doi.org/10.1016/j.ympev.2016.05.030.
Blaimer, B. B., Lloyd, M. W., Guillory, W. X., & Brady, S. G. (2016). Sequence capture and phylogenetic utility of genomic ultraconserved elements obtained from pinned insect specimens. PLoS ONE, 11, e0161531. https://doi.org/10.1371/journal.pone.0161531.
Bossert, S., & Danforth, B. N. (2018). On the universality of target enrichment baits for phylogenomic research. Methods in Ecology and Evolution, 9, 1453-1460. https://doi.org/10.1111/2041-210X.12988.
Boyer, S. L., & Giribet, G. (2007). A new model Gondwanan taxon: Systematics and biogeography of the harvestman family Pettalidae (Arachnida, Opiliones, Cyphophthalmi), with a taxonomic revision of genera from Australia and New Zealand. Cladistics, 23, 337-361. https://doi.org/10.1111/j.1096-0031.2007.00149.x.
Boyer, S. L., Karaman, I., & Giribet, G. (2005). The genus Cyphophthalmus (Arachnida, Opiliones, Cyphophthalmi) in Europe: A phylogenetic approach to Balkan peninsula biogeography. Molecular Phylogenetics and Evolution, 36, 554-567. https://doi.org/10.1016/j.ympev.2005.04.004.
Branstetter, M. G., Ješovnik, A., Sosa-Calvo, J., Lloyd, M. W., Faircloth, B. C., Brady, S. G., & Schultz, T. R. (2017). Dry habitats were crucibles of domestication in the evolution of agriculture in ants. Proceedings of the Royal Society B: Biological Sciences, 284, 20170095. https://doi.org/10.1098/rspb.2017.0095.
Branstetter, M. G., Longino, J. T., Ward, P. S., & Faircloth, B. C. (2017). Enriching the ant tree of life: Enhanced UCE bait set for genome-scale phylogenetics of ants and other Hymenoptera. Methods in Ecology and Evolution, 8, 768-776. https://doi.org/10.1111/2041-210X.12742.
Briggs, A. W., Stenzel, U., Johnson, P. L. F., Green, R. E., Kelso, J., Prufer, K., … Paabo, S. (2007). Patterns of damage in genomic DNA sequences from a Neandertal. Proceedings of the National Academy of Sciences, 104, 14616-14621. https://doi.org/10.1073/pnas.0704665104.
Burns, M., Hedin, M., & Shultz, J. W. (2012). Molecular phylogeny of the leiobunine harvestmen of eastern North America (Opiliones: Sclerosomatidae: Leiobuninae). Molecular Phylogenetics and Evolution, 63, 291-298. https://doi.org/10.1016/j.ympev.2011.12.025.
Burrell, A. S., Disotell, T. R., & Bergey, C. M. (2015). The use of museum specimens with high-throughput DNA sequencers. Journal of Human Evolution, 79, 35-44. https://doi.org/10.1016/j.jhevol.2014.10.015.
Castresana, J. (2000). Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Molecular Biology and Evolution, 17, 540-552. https://doi.org/10.1093/oxfordjournals.molbev.a026334.
Cotoras, D., Murray, G., Kapp, J., Gillespie, R., Griswold, C., Simison, W., … Shapiro, B. (2017). Ancient DNA Resolves the History of Tetragnatha (Araneae, Tetragnathidae) Spiders on Rapa Nui. Genes., 8(12), 403.
Der Sarkissian, C., Pichereau, V., Dupont, C., Ilsøe, P. C., Perrigault, M., Butler, P., … Orlando, L. (2017). Ancient DNA analysis identifies marine mollusc shells as new metagenomic archives of the past. Molecular Ecology Resources, 17, 835-853. https://doi.org/10.1111/1755-0998.12679.
Derkarabetian, S., Castillo, S., Koo, P. K., Ovchinnikov, S., & Hedin, M. (2019). An empirical demonstration of unsupervised machine learning in species delimitation. Molecular Phylogenetics and Evolution, 139, https://doi.org/10.1016/j.ympev.2019.106562.
Derkarabetian, S., Starrett, J., Tsurusaki, N., Ubick, D., Castillo, S., & Hedin, M. (2018). A stable phylogenomic classification of Travunioidea (Arachnida, Opiliones, Laniatores) based on sequence capture of ultraconserved elements. ZooKeys, 760, 1-36. https://doi.org/10.3897/zookeys.760.24937.
do Amaral, F. R., Neves, L. G., Resende, M. F. R., Mobili, F., Miyaki, C. Y., Pellegrino, K. C. M., & Biondo, C. (2015). Ultraconserved elements sequencing as a low-cost source of complete mitochondrial genomes and microsatellite markers in non-model amniotes. PLoS ONE, 10, e0138446. https://doi.org/10.1371/journal.pone.0138446.
Faircloth, B. C. (2013). Illumiprocessor: A trimmomatic wrapper for parallel adapter and quality trimming. https://doi.org/10.6079/J9ILL.
Faircloth, B. C. (2015). phyluce is a software package for the analysis of conserved genomic loci. Bioinformatics, 32, 786-788. https://doi.org/10.1093/bioinformatics/btv646.
Faircloth, B. C. (2017). Identifying conserved genomic elements and designing universal bait sets to enrich them. Methods in Ecology and Evolution, 8, 1103-1112. https://doi.org/10.1111/2041-210X.12754.
Faircloth, B. C., Branstetter, M. G., White, N. D., & Brady, S. G. (2015). Target enrichment of ultraconserved elements from arthropods provides a genomic perspective on relationships among Hymenoptera. Molecular Ecology Resources, 15, 489-501. https://doi.org/10.1111/1755-0998.12328.
Faircloth, B. C., McCormack, J. E., Crawford, N. G., Harvey, M. G., Brumfield, R. T., & Glenn, T. C. (2012). Ultraconserved elements anchor thousands of genetic markers spanning multiple evolutionary timescales. Systematic Biology, 61, 717-726. https://doi.org/10.1093/sysbio/sys004.
Fernández, R., Kvist, S., Lenihan, J., Giribet, G., & Ziegler, A. (2014). Sine systemate chaos? A versatile tool for earthworm taxonomy: Non-destructive imaging of freshly fixed and museum specimens using micro-computed tomography. PLoS ONE, 9, e96617. https://doi.org/10.1371/journal.pone.0096617.
Giribet, G., Vogt, L., González, A. P., Sharma, P., & Kury, A. B. (2010). A multilocus approach to harvestman (Arachnida: Opiliones) phylogeny with emphasis on biogeography and the systematics of Laniatores. Cladistics, 26, 408-437. https://doi.org/10.1111/j.1096-0031.2009.00296.x.
Glenn, T. C., Nilsen, R., Kieran, T. J., Sanders, J. G., Bayona-Vásquez, N. J., Finger Jr, J. W. & … B. C. (2019). Adapterama I: universal stubs and primers for thousands of dual-indexed or 147,456 combinatorially-indexed Illumina libraries (iTru & iNext). bioRxiv. https://doi.org/10.1101/049114.
Grabherr, M. G., Haas, B. J., Yassour, M., Levin, J. Z., Thompson, D. A., Amit, I., … Regev, A. (2011). Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nature Biotechnology, 29, 644. https://doi.org/10.1038/nbt.1883.
Hedin, M., Derkarabetian, S., Alfaro, A., Ramírez, M. J., & Bond, J. E. (2019). Phylogenomic analysis and revised classification of atypoid mygalomorph spiders (Araneae, Mygalomorphae), with notes on arachnid ultraconserved element loci. PeerJ, 7, e6864. https://doi.org/10.7717/peerj.6864.
Hedin, M., Derkarabetian, S., Blair, J., & Paquin, P. (2018). Sequence capture phylogenomics of eyeless Cicurina spiders from Texas caves, with emphasis on US federally-endangered species from Bexar County (Araneae, Hahniidae). ZooKeys, 769, 49. https://doi.org/10.3897/zookeys.769.25814.
Hedin, M., Derkarabetian, S., Ramírez, M. J., Vink, C., & Bond, J. E. (2018). Phylogenomic reclassification of the world's most venomous spiders (Mygalomorphae, Atracinae), with implications for venom evolution. Scientific Reports, 8, 1636. https://doi.org/10.1038/s41598-018-19946-2.
Hedin, M., Tsurusaki, N., Macías-Ordóñez, R., & Shultz, J. W. (2012). Molecular systematics of sclerosomatid harvestmen (Opiliones, Phalangioidea, Sclerosomatidae): Geography is better than taxonomy in predicting phylogeny. Molecular Phylogenetics and Evolution, 62, 224-236. https://doi.org/10.1016/j.ympev.2011.09.017.
Hunt, G. S. (1990). Hickmanoxyomma, a new genus of cavernicolous harvestmen from Tasmania (Opiliones: Triaenonychidae). Records of the Australian Museum, 42, 45-68. https://doi.org/10.3853/j.0067-1975.42.1990.106.
Hykin, S. M., Bi, K., & McGuire, J. A. (2015). Fixing formalin: A method to recover genomic-scale DNA sequence data from formalin-fixed museum specimens using high-throughput sequencing. PLoS ONE, 10, e0141579. https://doi.org/10.1371/journal.pone.0141579.
Katoh, K., & Standley, D. M. (2013). MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Molecular Biology and Evolution, 30, 772-780. https://doi.org/10.1093/molbev/mst010.
Kearse, M., Moir, R., Wilson, A., Stones-Havas, S., Cheung, M., Sturrock, S., … Drummond, A. (2012). Geneious Basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics, 28, 1647-1649. https://doi.org/10.1093/molbev/mst010.
Kehlmaier, C., Zhang, X., Georges, A., Campbell, P. D., Thomson, S., & Fritz, U. (2019). Mitogenomics of historical type specimens of Australasian turtles: Clarification of taxonomic confusion and old mitochondrial introgression. Scientific Reports, 9, 5841. https://doi.org/10.1038/s41598-019-42310-x.
Kocot, K. M., Citarella, M. R., Moroz, L. L., & Halanych, K. M. (2013). phylotreepruner: A phylogenetic tree-based approach for selection of orthologous sequences for phylogenomics. Evolutionary Bioinformatics, 9, EBO-S12813. https://doi.org/10.4137/EBO.S12813.
Li, C., Hofreiter, M., Straube, N., Corrigan, S., & Naylor, G. J. (2013). Capturing protein-coding genes across highly divergent species. BioTechniques, 54, 321-326. https://doi.org/10.2144/000114039.
Lienhard, A., & Schäffer, S. (2019). Extracting the invisible: Obtaining high quality DNA is a challenging task in small arthropods. PeerJ, 7, e6753. https://doi.org/10.7717/peerj.6753.
Lim, H. C., & Braun, M. J. (2016). High-throughput SNP genotyping of historical and modern samples of five bird species via sequence capture of ultraconserved elements. Molecular Ecology Resources, 16, 1204-1223. https://doi.org/10.1111/1755-0998.12568.
Lindahl, T. (1993). Instability and decay of the primary structure of DNA. Nature, 362, 709-715. https://doi.org/10.1038/362709a0.
Maury, E. A. (1987). Triaenonychidae sudamericanos. IV. El género Triaenonychoides H. Soares 1968 (Opiliones, Laniatores). Boletín De La Sociedad De Biología De Concepción, 58, 95-106.
Maury, E. A. (1988). Triaenonychidae Sudamericanos. III. Descripción de los nuevos géneros Nahuelonyx y Valdivionyx (Opiliones, Laniatores). Journal of Arachnology, 16, 71-83.
McCormack, J. E., Rodríguez-Gómez, F., Tsai, W. L., & Faircloth, B. C. (2017). Transforming museum specimens into genomic resources 1. In: M. S. Webster (Eds.), The Extended Specimen (pp. 143-156). Boca Raton, FL: CRC Press, Boca.
McCormack, J. E., Tsai, W. L. E., & Faircloth, B. C. (2016). Sequence capture of ultraconserved elements from bird museum specimens. Molecular Ecology Resources, 16, 1189-1203. https://doi.org/10.1111/1755-0998.12466.
McGuire, J. A., Cotoras, D. D., O’Connell, B., Lawalata, S. Z. S., Wang-Claypool, C. Y., Stubbs, A., … Iskandar, D. T. (2018). Squeezing water from a stone: High-throughput sequencing from a 145-year old holotype resolves (barely) a cryptic species problem in flying lizards. PeerJ, 6, e4470. https://doi.org/10.7717/peerj.4470.
Miller, J. A., Beentjes, K. K., van Helsdingen, P., & IJland, S. (2013). Which specimens from a museum collection will yield DNA barcodes? A time series study of spiders in alcohol. ZooKeys, 365, 245-261. https://doi.org/10.3897/zookeys.365.5787.
Miller, M. A., Pfeiffer, W., & Schwartz, T. (2010). Creating the CIPRES Science Gateway for inference of large phylogenetic trees. In: Proceedings of the Gateway Computing Environments Workshop (GCE), 14 November 2010, pp. 1-8, New Orleans, LA. Retrieved from http://www.phylo.org/sub_sections/portal/sc2010_paper.pdf.
Nelson, G., & Ellis, S. (2019). The history and impact of digitization and digital data mobilization on biodiversity research. Philosophical Transactions of the Royal Society B: Biological Sciences, 374, 20170391. https://doi.org/10.1098/rstb.2017.0391.
Oliveros, C. H., Field, D. J., Ksepka, D. T., Barker, F. K., Aleixo, A., Andersen, M. J., … Faircloth, B. C. (2019). Earth history and the passerine superradiation. Proceedings of the National Academy of Sciences, 116, 7916-7925. https://doi.org/10.1073/pnas.1813206116.
Paijmans, J. L. A., Fickel, J., Courtiol, A., Hofreiter, M., & Förster, D. W. (2016). Impact of enrichment conditions on cross-species capture of fresh and degraded DNA. Molecular Ecology Resources, 16, 42-55. https://doi.org/10.1111/1755-0998.12420.
Prosser, S. W. J., deWaard, J. R., Miller, S. E., & Hebert, P. D. N. (2016). DNA barcodes from century-old type specimens using next-generation sequencing. Molecular Ecology Resources, 16, 487-497. https://doi.org/10.1111/1755-0998.12474.
Quattrini, A. M., Faircloth, B. C., Dueñas, L. F., Bridge, T. C. L., Brugler, M. R., Calixto-Botía, I. F., … McFadden, C. S. (2018). Universal target-enrichment baits for anthozoan (Cnidaria) phylogenomics: New approaches to long-standing problems. Molecular Ecology Resources, 18, 281-295. https://doi.org/10.1111/1755-0998.12736.
Rohland, N., & Reich, D. (2012). Cost-effective, high-throughput DNA sequencing libraries for multiplexed target capture. Genome Research, 22, 939-946. https://doi.org/10.1101/gr.128124.111.
Ruane, S., & Austin, C. C. (2017). Phylogenomics using formalin-fixed and 100+ year-old intractable natural history specimens. Molecular Ecology Resources, 17, 1003-1008. https://doi.org/10.1111/1755-0998.12655.
Rubi, T. L., Knowles, L. L., & Dantzer, B. (2019). Museum epigenomics: Characterizing cytosine methylation in historic museum specimens. bioRxiv, 620583.
Satler, J. D., Herre, E. A., Jandér, K. C., Eaton, D. A., Machado, C. A., Heath, T. A., & Nason, J. D. (2018). Inferring processes of coevolutionary diversification in a community of Panamanian strangler figs and associated pollinating wasps. bioRxiv. https://doi.org/10.1101/490862.
Sawyer, S., Krause, J., Guschanski, K., Savolainen, V., & Pääbo, S. (2012). Temporal patterns of nucleotide misincorporations and DNA fragmentation in ancient DNA. PLoS ONE, 7(3), e34131. https://doi.org/10.1371/journal.pone.0034131.
Short, A. E. Z., Dikow, T., & Moreau, C. S. (2018). Entomological collections in the age of big data. Annual Review of Entomology, 63, 513-530. https://doi.org/10.1146/annurev-ento-031616-035536.
Smith, B. T., Harvey, M. G., Faircloth, B. C., Glenn, T. C., & Brumfield, R. T. (2013). Target capture and massively parallel sequencing of ultraconserved elements for comparative studies at shallow evolutionary time scales. Systematic Biology, 63, 83-95. https://doi.org/10.1093/sysbio/syt061.
Soltis, D. E., & Soltis, P. S. (2016). Mobilizing and integrating big data in studies of spatial and phylogenetic patterns of biodiversity. Plant Diversity, 38, 264-270. https://doi.org/10.1016/j.pld.2016.12.001.
Sproul, J. S., & Maddison, D. R. (2017). Sequencing historical specimens: Successful preparation of small specimens with low amounts of degraded DNA. Molecular Ecology Resources, 17, 1183-1201. https://doi.org/10.1111/1755-0998.12660.
Staats, M., Erkens, R. H. J., van de Vossenberg, B., Wieringa, J. J., Kraaijeveld, K., Stielow, B., … Bakker, F. T. (2013). Genomic treasure troves: Complete genome sequencing of herbarium and insect museum specimens. PLoS ONE, 8, e69189. https://doi.org/10.1371/journal.pone.0069189.
Stamatakis, A. (2014). raxml version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics, 30, 1312-1313. https://doi.org/10.1093/bioinformatics/btu033.
Starrett, J., Derkarabetian, S., Hedin, M., Bryson, R. W. Jr, McCormack, J. E., & Faircloth, B. C. (2017). High phylogenetic utility of an ultraconserved element probe set designed for Arachnida. Molecular Ecology Resources, 17, 812-823. https://doi.org/10.1111/1755-0998.12621.
Suchan, T., Pitteloud, C., Gerasimova, N. S., Kostikova, A., Schmid, S., Arrigo, N., … Alvarez, N. (2016). Hybridization capture using RAD probes (hyRAD), a new tool for performing genomic analyses on collection specimens. PLoS ONE, 11, e0151651. https://doi.org/10.1371/journal.pone.0151651.
Swanson, M. T., Oliveros, C. H., & Esselstyn, J. A. (2019). A phylogenomic rodent tree reveals the repeated evolution of masseter architectures. Proceedings of the Royal Society B: Biological Sciences, 286(1902), 20190672. https://doi.org/10.1098/rspb.2019.0672.
Talavera, G., & Castresana, J. (2007). Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments. Systematic Biology, 56, 564-577. https://doi.org/10.1080/10635150701472164.
Tin, M.-M.-Y., Economo, E. P., & Mikheyev, A. S. (2014). Sequencing degraded DNA from non-destructively sampled museum specimens for rad-tagging and low-coverage shotgun phylogenetics. PLoS ONE, 9, e96793. https://doi.org/10.1371/journal.pone.0096793.
Tsai, W. L. E., Mota-Vargas, C., Rojas-Soto, O., Bhowmik, R., Liang, E. Y., Maley, J. M., … McCormack, J. E. (2019). Museum genomics reveals the speciation history of Dendrortyx wood-partridges in the Mesoamerican highlands. Molecular Phylogenetics and Evolution, 136, 29-34. https://doi.org/10.1016/j.ympev.2019.03.017.
Van Dam, M. H., Trautwein, M., Spicer, G. S., & Esposito, L. (2019). Advancing mite phylogenomics: Designing ultraconserved elements for Acari phylogeny. Molecular Ecology Resources, 19, 465-475. https://doi.org/10.1111/1755-0998.12962.
van de Kamp, T., Schwermann, A. H., dos Santos Rolo, T., Lösel, P. D., Engler, T., Etter, W., … Krogmann, L. (2018). Parasitoid biology preserved in mineralized fossils. Nature Communications, 9, 3325. https://doi.org/10.1038/s41467-018-05654-y.
Vélez, S., Fernández, R., & Giribet, G. (2014). A molecular phylogenetic approach to the New Zealand species of Enantiobuninae (Opiliones: Eupnoi: Neopilionidae). Invertebrate Systematics, 28, 565-589. https://doi.org/10.1071/IS14030.
Webster, M. S. (2017). The extended specimen: Emerging frontiers in collections-based ornithological research. Boca Raton, FL: CRC Press.
Wheeler, W. C., Coddington, J. A., Crowley, L. M., Dimitrov, D., Goloboff, P. A., Griswold, C. E., … Zhang, J. (2017). The spider tree of life: Phylogeny of Araneae based on target-gene analyses from an extensive taxon sampling. Cladistics, 33, 574-616. https://doi.org/10.1111/cla.12182.
Willerslev, E., & Cooper, A. (2004). Ancient DNA. Proceedings of the Royal Society B: Biological Sciences, 272, 3-16. https://doi.org/10.1098/rspb.2004.2813.
Wood, H. M., González, V. L., Lloyd, M., Coddington, J., & Scharff, N. (2018). Next-generation museum genomics: Phylogenetic relationships among palpimanoid spiders using sequence capture techniques (Araneae: Palpimanoidea). Molecular Phylogenetics and Evolution, 127, 907-918. https://doi.org/10.1016/j.ympev.2018.06.038.
Zarza, E., Connors, E. M., Maley, J. M., Tsai, W. L., Heimes, P., Kaplan, M., & McCormack, J. E. (2018). Combining ultraconserved elements and mtDNA data to uncover lineage diversity in a Mexican highland frog (Sarcohyla; Hylidae). PeerJ, 6, e6045. https://doi.org/10.7717/peerj.6045.
Zerbino, D. R., & Birney, E. (2008). Velvet: Algorithms for de novo short read assembly using de Bruijn graphs. Genome Research, 18, 821-829. https://doi.org/10.1101/gr.074492.107.
معلومات مُعتمدة: Harvard Dean's Fund; DEB-1601208 Division of Environmental Biology; DEB-1754278 Division of Environmental Biology
فهرسة مساهمة: Keywords: Opiliones; degraded DNA; ethanol preservation; museum collections; phylogenomics; ultraconserved elements
المشرفين على المادة: 1HG84L3525 (Formaldehyde)
3K9958V90M (Ethanol)
9007-49-2 (DNA)
تواريخ الأحداث: Date Created: 20190827 Date Completed: 20200312 Latest Revision: 20200312
رمز التحديث: 20231215
DOI: 10.1111/1755-0998.13072
PMID: 31448547
قاعدة البيانات: MEDLINE
الوصف
تدمد:1755-0998
DOI:10.1111/1755-0998.13072