دورية أكاديمية

Coupled sensory interneurons mediate escape neural circuit processing in an aquatic annelid worm, Lumbriculus variegatus.

التفاصيل البيبلوغرافية
العنوان: Coupled sensory interneurons mediate escape neural circuit processing in an aquatic annelid worm, Lumbriculus variegatus.
المؤلفون: Lybrand ZR; Department of Biology, University of Texas, San Antonio, Texas., Martinez-Acosta VG; Department of Biology, University of the Incarnate Word, San Antonio, Texas., Zoran MJ; Department of Biology, Texas A&M University, College Station, Texas.
المصدر: The Journal of comparative neurology [J Comp Neurol] 2020 Feb 15; Vol. 528 (3), pp. 468-480. Date of Electronic Publication: 2019 Oct 04.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Wiley-Liss Country of Publication: United States NLM ID: 0406041 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1096-9861 (Electronic) Linking ISSN: 00219967 NLM ISO Abbreviation: J Comp Neurol Subsets: MEDLINE
أسماء مطبوعة: Publication: <2003-> : Hoboken, N.J. : Wiley-Liss
Original Publication: Philadelphia Wistar Institute of Anatomy and Biology
مواضيع طبية MeSH: Interneurons/*physiology , Nerve Net/*physiology , Sensory Receptor Cells/*physiology, Animals ; Annelida ; Excitatory Amino Acid Antagonists/pharmacology ; Excitatory Postsynaptic Potentials/drug effects ; Excitatory Postsynaptic Potentials/physiology ; Interneurons/drug effects ; Interneurons/ultrastructure ; Nerve Net/drug effects ; Nerve Net/ultrastructure ; Oligochaeta ; Sensory Receptor Cells/drug effects ; Sensory Receptor Cells/ultrastructure
مستخلص: The interneurons associated with rapid escape circuits are adapted for fast pathway activation and rapid conduction. An essential aspect of fast activation is the processing of sensory information with limited delays. Although aquatic annelid worms have some of the fastest escape responses in nature, the sensory networks that mediate their escape behavior are not well defined. Here, we demonstrate that the escape circuit of the mud worm, Lumbriculus variegatus, is a segmentally arranged network of sensory interneurons electrically coupled to the central medial giant fiber (MGF), the command-like interneuron for head withdrawal. Electrical stimulation of the body wall evoked fast, short-duration spikelets in the MGF, which we suggest are the product of intermediate giant fiber activation coupled to MGF collateral dendrites. Since these contact sites have immunoreactivity with a glutamate receptor antibody, and the glutamate receptor antagonist 6-cyano-7-nitroquinoxaline-2,3-dion abolishes evoked MGF responses, we conclude that the afferent pathway for MGF-mediated escape is glutamatergic. This electrically coupled sensory network may facilitate rapid escape activation by enhancing the amplitude of giant axon depolarization.
(© 2019 Wiley Periodicals, Inc.)
References: Alcami, P. (2018). Electrical synapses enhance and accelerate interneuron recruitment in response to coincident and sequential excitation. Frontiers in Cellular Neuroscience, 12, 156.
Amsalem, O., Van Geit, W., Muller, E., Markram, H., & Segev, I. (2016). From neuron biophysics to orientation selectivity in electrically coupled networks of neocortical L2/3 large basket cells. Cerebral Cortex, 26, 3655-3668.
Antonsen, B. L., & Edwards, D. H. (2003). Differential dye coupling reveals lateral giant escape circuit in crayfish. The Journal of Comparative Neurology, 466(1), 1-13.
Baccus, S. A., Burrell, B. D., Sahley, C. L., & Muller, K. J. (2000). Action potential reflection and failure at axon branch points cause stepwise changes in EPSPs in a neuron essential for learning. Journal of Neurophysiology, 83(3), 1693-1700.
Bullock, T. H. (1953). Properties of some natural and quasi-artificial synapses in polychaetes. The Journal of Comparative Neurology, 98, 37-68.
Burrell, B. D., & Sahley, C. L. (2004). Multiple forms of long-term potentiation and long-term depression converge on a single interneuron in the leech CNS. The Journal of Neuroscience, 24(16), 4011-4019.
Curti, S., & Pereda, A. E. (2004). Voltage-dependent enhancement of electrical coupling by a subthreshold sodium current. The Journal of Neuroscience, 24, 3999-4010.
Dierolf, B. M., & Brink, P. R. (1973). Effects of temperature acclimation on cable constants of the earthworm median giant axon. Comparative Biochemistry and Physiology, 44, 401-406.
Di Garbo, A., Barbi, M., & Chillemi S. (2007). The synchronization properties of a network of inhibitory interneurons depend on the biophysical model. BioSystems, 88, 216-227.
Drewes, C. D. (1984). Escape reflexes in earthworms and other annelids. In R. C. Eaton (Ed.), Neural mechanisms of startle behavior (pp. 43-91). New York: Plenum Press.
Drewes, C. D., & Fourtner, C. R. (1989). Hindsight and rapid escape in a freshwater oligochaete. The Biological Bulletin, 177, 363-371.
Drewes, C. D., & Fourtner, C. R. (1990). Morphallaxis in an aquatic oligochaete, Lumbriculus variegatus: Reorganization of escape reflexes in regenerating body fragments. Developmental Biology, 138(1), 94-103.
Edwards, D. H., Heitler, W. J., & Krasne, F. B. (1999). Fifty years of a command neuron: The neurobiology of escape behavior in the crayfish. Trends in Neurosciences, 22(4), 153-161.
Epsztein, J., Lee, A. K., Chorev, E., & Brecht, M. (2010). Impact of spikelets on hippocampal CA1 pyramidal cell activity during spatial exploration. Science, 327, 474-477.
Firme, C. P., Natan, R. G., Yazdani, N., Macagno, E. R., & Baker, M. W. (2012). Ectopic expression of select innexins in individual central neurons couples them to pre-existing neuronal or glial networks that express the same innexin. The Journal of Neuroscience, 32(41), 14265-14270.
Galarreta, M., & Hestrin, S. (1999). A network of fast-spiking cells in the neocortex connected by electrical synapses. Nature, 402, 72-75.
Grey, K. B., & Burrell, B. D. (2010). Co-induction of LTP and LTD and its regulation by protein kinases and phosphatases. Journal of Neurophysiology, 103(5), 2737-2746.
Grey, K. B., Moss, B. L., & Burrell, B. D. (2009). Molecular identification and expression of the NMDA receptor NR1 subunit in the leech. Invertebrate Neuroscience, 9(1), 11-20.
Gunther, J. (1975). Neuronal syncytia in the giant fibres of earthworms. Journal of Neurocytology, 4(1), 55-62.
Hagiwara, S., Morita, H., & Naka, K. (1964). Transmission through distributed synapses between two giant axons of a sabellid worm. Comparative Biochemistry and Physiology, 13, 453-460.
Hartline, D. K., & Colman, D. R. (2007). Rapid conduction and the evolution of giant axons and myelinated fibers. Current Biology, 17(1), R29-R35.
Herberholz, J., Antonsen, B. L., & Edwards, D. H. (2002). A lateral excitatory network in the escape circuit of crayfish. The Journal of Neuroscience, 22, 9078-9085.
Herberholz, J., & Marquart, G. D. (2012). Decision making and behavioral choice during predator prey avoidance. Frontiers in Neuroscience, 6, 125.
Hjorth, J., Blackwell, K. T., & Kotaleski, J. H. (2009). Gap junctions between striatal fast-spiking interneurons regulate spiking activity and synchronization as a function of cortical activity. The Journal of Neuroscience, 29, 5276-5286.
Huntley, G. W., Rogers, S. W., Moran, T., Janssen, W., Archin, N., Vickers, J. C., … Morrison, J. H. (1993). Selective distribution of kainate receptor subunit immunoreactivity in monkey neocortex revealed by a monoclonal antibody that recognizes glutamate receptor subunits GluR5/6/7. The Journal of Neuroscience, 13(7), 2965-2981.
Jabeen, S., & Thirumalai, V. (2018). The interplay between electrical and chemical synaptogenesis. Journal of Neurophysiology, 120, 1914-1922.
Jamieson, B. G. M. (1981). The ultrastructure of the oligochaete. London:Academic Press Inc.
Kandarian, B., Sethi, J., Wu, A., Baker, M., Yazdani, N., Kym, E., … Macagno, E. (2012). The medicinal leech genome encodes 21 innexin genes: Different combinations are expressed by identified central neurons. Development Genes and Evolution, 222(1), 29-44.
Kensler, R. W., Brink, P. R., & Dewey, M. M. (1979). The septum of the lateral axon of the earthworm: A thin section and freeze-fracture study. Journal of Neurocytology, 8(5), 565-590.
Krasne, F. B. (1965). Escape from recurring tactile stimulation in Branchiomma vesiculosum. The Journal of Experimental Biology, 42, 307-322.
Li, Q., & Burrell, B. D. (2011). Associative, bidirectional changes in neural signaling utilizing NMDA receptor- and endocannabinoid-dependent mechanisms. Learning & Memory, 18(9), 545-553.
Liu, P., Chen, B., Mailler, R., & Wang, Z.-W. (2017). Antidromic-rectifying gap junctions amplify chemical transmission at functionally mixed electrical-chemical synapses. Nature Communications, 8, 14818.
Liu, Y.-C., & Herberholz, J. (2010). Sensory activation and receptive field organization of the lateral giant escape neurons in crayfish. Journal of Neurophysiology, 104, 675-684.
Lybrand, Z. R., & Zoran, M. J. (2012). Rapid neural circuit switching mediated by synaptic plasticity during morphallactic regeneration. Developmental Neurobiology, 72, 1256-1266.
Martinez, V. G., Menger, G. J., 3rd, & Zoran, M. J. (2005). Regeneration and asexual reproduction share common molecular changes: Upregulation of a neural glycoepitope during morphallaxis in Lumbriculus. Mechanisms of Development, 122(5), 721-732.
Mellon, D., Treherne, J. E., Lane, N. J., Harrison, J. B., & Langley, C. K. (1980). Electrical interactions between the giant axons of a polychaete worm (Sabella penicillus L.). The Journal of Experimental Biology, 84, 119-136.
Muller, K. J., & Scott, S. A. (1981). Transmission at a ‘direct’ electrical connexion mediated by an interneurone in the leech. The Journal of Physiology, 311, 565-583.
Pereda, A. E. (2014). Electrical synapses and their functional interactions with chemical synapses. Nature Reviews. Neuroscience, 15(4), 250-263.
Pereda, A. E., Rash, J. E., Nagy, J. I., & Bennett, M. V. L. (2004). Dynamics of electrical transmission at club endings on the Mauthner cells. Brain Research Reviews, 47, 227-244.
Petralia, R. S., & Wenthold, R. J. (1992). Light and electron immunocytochemical localization of AMPA-selective glutamate receptors in the rat brain. The Journal of Comparative Neurology, 318(3), 329-354.
Petralia, R. S., Yokotani, N., & Wenthold, R. J. (1994). Light and electron microscope distribution of the NMDA receptor subunit NMDAR1 in the rat nervous system using a selective anti-peptide antibody. The Journal of Neuroscience, 14(2), 667-696.
Rabinowitch, I., Chatzigeorgiou, M., & Schafer, W. R. (2013). A gap junction circuit enhances processing of coincident mechanosensory inputs. Current Biology, 23(11), 963-967.
Rela, L., & Szczupak, L. (2004). Gap junctions: Their importance for the dynamics of neural circuits. Molecular Neurobiology, 30, 341-357.
Schweigreiter, R., Roots, B. I., Bandtlow, C. E., & Gould, R. M. (2006). Understanding myelination through studying its evolution. International Review of Neurobiology, 73, 219-273.
Siegel, S. J., Janssen, W. G., Tullai, J. W., Rogers, S. W., Moran, T., Heinemann, S. F., & Morrison, J. H. (1995). Distribution of the excitatory amino acid receptor subunits GluR2(4) in monkey hippocampus and colocalization with subunits GluR5-7 and NMDAR1. The Journal of Neuroscience, 15(4), 2707-2719.
Smith, P. H., & Mittenthal, J. E. (1980). Intersegmental variation of afferent pathways to giant interneurons of the earthworm Lumbricus terrestris. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 140(4), 351-363.
Thorogood, M. S., Almeida, V. W., & Brodfuehrer, P. D. (1999). Glutamate receptor 5/6/7-like and glutamate transporter-1-like immunoreactivity in the leech central nervous system. The Journal of Comparative Neurology, 405(3), 334-344.
van Welie, I., Roth, A., Ho, S. S., Komai, S., & Häusser, M. (2016). Conditional spike transmission mediated by electrical coupling ensures millisecond precision-correlated activity among interneurons in vivo. Neuron, 90, 810-823.
Yazdani, N., Firme, C. P., Macagno, E. R., & Baker, M. W. (2013). Expression of a dominant negative mutant innexin in identified neurons and glial cells reveals selective interactions among gap junctional proteins. Developmental Neurobiology, 73(8), 571-586.
Zoran, M. J., & Drewes, C. D. (1987). Rapid escape reflexes in aquatic oligochaetes: Variations in design and function of evolutionarily conserved giant fiber systems. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 161(5), 729-738.
Zoran, M. J., Drewes, C. D., Fourtner, C. R., & Siegel, A. J. (1988). The lateral giant fibers of the tubificid worm, Branchiura sowerbyi: Structural and functional asymmetry in a paired interneuronal system. The Journal of Comparative Neurology, 275(1), 76-86.
Zoran, M. J., & Martinez, V. G. (2009). Lumbriculus variegatus and the need for speed: A model system for rapid escape, regeneration and asexual reproduction, in annelids in modern biology. In D. H. Shain (Ed.), Annelids in modern biology (pp. 185-202). Hoboken, NJ: John Wiley & Sons.
Zucker, R. S. (1972). Crayfish escape behavior and central synapses. I. Neural circuit exciting lateral giant fiber. Journal of Neurophysiology, 35(5), 599-620.
فهرسة مساهمة: Keywords: RRID:AB_141357; RRID:AB_141596; RRID:AB_1500929; RRID:AB_1566261; RRID:AB_396353; RRID:AB_880229; annelid; couple network; electrical synapse; giant interneuron; sensory processing; silent synapse
المشرفين على المادة: 0 (Excitatory Amino Acid Antagonists)
تواريخ الأحداث: Date Created: 20190911 Date Completed: 20210729 Latest Revision: 20210729
رمز التحديث: 20240628
DOI: 10.1002/cne.24769
PMID: 31502251
قاعدة البيانات: MEDLINE
الوصف
تدمد:1096-9861
DOI:10.1002/cne.24769