دورية أكاديمية

Better lucky than good: How savanna trees escape the fire trap in a variable world.

التفاصيل البيبلوغرافية
العنوان: Better lucky than good: How savanna trees escape the fire trap in a variable world.
المؤلفون: Hoffmann WA; Department of Plant and Microbial Biology, North Carolina State University, Raleigh, North Carolina, 27695, USA., Sanders RW; Department of Plant and Microbial Biology, North Carolina State University, Raleigh, North Carolina, 27695, USA., Just MG; Department of Plant and Microbial Biology, North Carolina State University, Raleigh, North Carolina, 27695, USA., Wall WA; U.S. Army Corps of Engineers, Engineer Research and Development Center, P.O. Box 9005, Champaign, Illinois, 61826, USA., Hohmann MG; U.S. Army Corps of Engineers, Engineer Research and Development Center, P.O. Box 9005, Champaign, Illinois, 61826, USA.
المصدر: Ecology [Ecology] 2020 Jan; Vol. 101 (1), pp. e02895. Date of Electronic Publication: 2019 Nov 06.
نوع المنشور: Journal Article; Research Support, U.S. Gov't, Non-P.H.S.
اللغة: English
بيانات الدورية: Publisher: Ecological Society of America Country of Publication: United States NLM ID: 0043541 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1939-9170 (Electronic) Linking ISSN: 00129658 NLM ISO Abbreviation: Ecology Subsets: MEDLINE
أسماء مطبوعة: Publication: Washington, DC : Ecological Society of America
Original Publication: Brooklyn, NY : Brooklyn Botanical Garden
مواضيع طبية MeSH: Grassland* , Models, Theoretical*, Ecosystem
مستخلص: Fire controls tree cover in many savannas by suppressing saplings through repeated topkill and resprouting, causing a demographic bottleneck. Tree cover can increase dramatically if even a small fraction of saplings escape this fire trap, so modeling and management of savanna vegetation should account for occasional individuals that escape the fire trap because they are "better" (i.e., they grow faster than average) or because they are "lucky" (they experience an occasional longer-than-average interval without fire or a below-average fire severity). We quantified variation in growth rates and topkill probability in Quercus laevis (turkey oak) in longleaf pine savanna to estimate the percentage of stems expected to escape the fire trap due to variability in (1) growth rate, (2) fire severity, and (3) fire interval. For trees growing at the mean rate and exposed to the mean fire severity and the mean fire interval, no saplings are expected to become adults under typical fire frequencies. Introducing variability in any of these factors, however, allows some individuals to escape the fire trap. A variable fire interval had the greatest influence, allowing 8% of stems to become adults within a century. In contrast, introducing variation in fire severity and growth rate should allow 2.8% and 0.3% of stems to become adults, respectively. Thus, most trees that escape the fire trap do so because of luck. By chance, they experience long fire-free intervals and/or a low-severity fire when they are not yet large enough to resist an average fire. Fewer stems escape the fire trap by being unusually fast-growing individuals. It is important to quantify these sources of variation and their consequences to improve understanding, prediction, and management of vegetation dynamics of fire-maintained savannas. Here we also present a new approach to quantifying variation in fire severity utilizing a latent-variable model of logistic regression.
(© 2019 by the Ecological Society of America.)
References: Archibald, S., C. E. R. Lehmann, J. L. Gómez-Dans, and R. A. Bradstock. 2013. Defining pyromes and global syndromes of fire regimes. Proceedings of the National Academy of Sciences USA 110:6442-6447.
Bell, R. H. V. 1984. Notes on elephant-woodland interactions. IUCN, Gland, Switzerland.
Berg, E. E., and J. L. Hamrick. 1995. Fine-scale genetic structure of a turkey oak forest. Evolution 49:110.
Bond, W. J., and G. F. Midgley. 2000. A proposed CO2-controlled mechanism of woody plant invasion in grasslands and savannas. Global Change Biology 6:865-969.
Bond, W. J., G. D. Cook, and R. J. Williams. 2012. Which trees dominate in savannas? The escape hypothesis and eucalypts in northern Australia. Austral Ecology 37:678-685.
D'Odorico, P., F. Laio, and L. Ridolfi. 2006. A probabilistic analysis of fire-induced tree-grass coexistence in savannas. American Naturalist 167:E79-E87.
Ficken, C. D., and J. P. Wright. 2017. Contributions of microbial activity and ash deposition to post-fire nitrogen availability in a pine savanna. Biogeosciences 14:241-255.
Fill, J. M., S. M. Welch, J. L. Waldron, and T. A. Mousseau. 2012. The reproductive response of an endemic bunchgrass indicates historical timing of a keystone process. Ecosphere 3:art61.
Fill, J. M., W. J. Platt, S. M. Welch, J. L. Waldron, and T. A. Mousseau. 2015. Updating models for restoration and management of fiery ecosystems. Forest Ecology and Management 356:54-63.
Freeman, M. E., P. A. Vesk, B. P. Murphy, G. D. Cook, A. E. Richards, and R. J. Williams. 2017. Defining the fire trap: extension of the persistence equilibrium model in mesic savannas. Austral Ecology 42:890-899.
Frost, C. 2006. History and future of the longleaf pine ecosystem. Pages 9-48 in S. Jose, E. Jokela, and D. Miller, editors. The Longleaf Pine Ecosystem. Springer, New York, New York, USA.
Gambiza, J., W. Bond, P. G. H. Frost, and S. Higgins. 2000. A simulation model of miombo woodland dynamics under different management regimes. Ecological Economics 33:353-368.
Grady, J. M., and W. A. Hoffmann. 2012. Caught in a fire trap: recurring fire creates stable size equilibria in woody resprouters. Ecology 93:2052-2060.
Hammond, D. H., J. M. Varner, J. S. Kush, and Z. Fan. 2015. Contrasting sapling bark allocation of five southeastern USA hardwood tree species in a fire prone ecosystem. Ecosphere 6:art112.
Hanan, N. P., W. B. Sea, G. Dangelmayr, and N. Govender. 2008. Do fires in savannas consume woody biomass? A comment on approaches to modeling savanna dynamics. American Naturalist 171:851-856.
Heyward, F. 1939. The Relation of Fire to Stand Composition of Longleaf Pine Forests. Ecology 20:287-304.
Hiers, J. K., J. R. Walters, R. J. Mitchell, J. M. Varner, L. M. Conner, L. A. Blanc, and J. Stowe. 2014. Ecological value of retaining pyrophytic oaks in longleaf pine ecosystems. Journal of Wildlife Management 78:383-393.
Higgins, S. I., W. J. Bond, and W. S. W. Trollope. 2000. Fire, resprouting and variability: a recipe for grass-tree coexistence in savanna. Journal of Ecology 88:213-229.
Hoffmann, W. A., E. L. Geiger, S. Gotsch, D. R. Rossatto, L. C. R. Silva, O. L. Lau, M. Haridasan, and A. C. Franco. 2012. Ecological thresholds at the savanna-forest boundary: How plant traits, resources and fire govern the distribution of tropical biomes. Ecology Letters 15:759-768.
Just, M. G., J. L. Schafer, M. G. Hohmann, and W. A. Hoffmann. 2017. Wood decay and the persistence of resprouting species in pyrophilic ecosystems. Trees 31:237-245.
Keeley, J. E. 2009. Fire intensity, fire severity and burn severity: a brief review and suggested usage. International Journal of Wildland Fire 18:116-126.
Knapp, E. E., and J. E. Keeley. 2006. Heterogeneity in fire severity within early season and late season prescribed burns in a mixed-conifer forest. International Journal of Wildland Fire 15:37.
Lashley, M. A., M. C. Chitwood, A. Prince, M. B. Elfelt, E. L. Kilburg, C. S. DePerno, and C. E. Moorman. 2014. Subtle effects of a managed fire regime: a case study in the longleaf pine ecosystem. Ecological Indicators 38:212-217.
Lawes, M. J., A. Richards, J. Dathe, and J. J. Midgley. 2011. Bark thickness determines fire resistance of selected tree species from fire-prone tropical savanna in north Australia. Plant Ecology 212:2057-2069.
Loudermilk, E. L., W. P. Cropper, R. J. Mitchell, and H. Lee. 2011. Longleaf pine (Pinus palustris) and hardwood dynamics in a fire-maintained ecosystem: a simulation approach. Ecological Modelling 222:2733-2750.
Loudermilk, E. L., J. J. O'Brien, R. J. Mitchell, W. P. Cropper, J. K. Hiers, S. Grunwald, J. Grego, and J. C. Fernandez-Diaz. 2012. Linking complex forest fuel structure and fire behaviour at fine scales. International Journal of Wildland Fire 21:882-893.
Macfarlane, C., Y. Ryu, G. N. Ogden, and O. Sonnentag. 2014. Digital canopy photography: exposed and in the raw. Agricultural and Forest Meteorology 197:244-253.
McCarthy, M. A., A. M. Gill, and R. A. Bradstock. 2001. Theoretical fire-interval distributions. International Journal of Wildland Fire 10:73-77.
Means, D. B. 2007. Vertebrate faunal diversity of longleaf pine ecosystems. Pages 157-213 in S. Jose, E. Jokela, and D. Miller, editors. The Longleaf Pine Ecosystem. Springer, New York, New York, USA.
Nguyen, T. T., B. P. Murphy, and P. J. Baker. 2019. The existence of a fire-mediated tree-recruitment bottleneck in an Asian savanna. Journal of Biogeography 46:745-756.
Pilon, N. A. L., and G. Durigan. 2017. Growing faster and colonizing first: evolutionary and ecological advantages of the tallest individuals within a cohort. Austral Ecology 42:611-616.
Prior, L. D., R. J. Williams, and D. Bowman. 2010. Experimental evidence that fire causes a tree recruitment bottleneck in an Australian tropical savanna. Journal of Tropical Ecology 26:595-603.
Provencher, L., A. R. Litt, and D. R. Gordon. 2003. Predictors of species richness in northwest Florida longleaf pine Sandhills. Conservation Biology 17:1660-1671.
R Development Core Team. 2018. R 3.5.1. R Project for Statistical Computing, Vienna, Austria. www.R-project.org.
Rebertus, A. J., G. B. Williamson, and E. B. Moser. 1989. Fire-induced changes in Quercus laevis spatial pattern in Florida Sandhills. Journal of Ecology 77:638-650.
Rebertus, A. J., G. B. Williamson, and W. J. Platt. 1993. Impact of temporal variation in fire regimes on savanna oaks and pines. 18th Tall Timbers Fire Ecology Conference. The Longleaf Pine Ecosystem: Ecology, Restoration, and Management 18:215-225.
Ryan, C. M., and M. Williams. 2011. How does fire intensity and frequency affect miombo woodland tree populations and biomass? Ecological Applications 21:48-60.
Schafale, M. 2012. Guide to the natural communities of North Carolina: fourth approximation. Department of Environment, Health, and Natural Resources, North Carolina Natural Heritage Program, Division of Parks and Recreation, Raleigh, North Carolina, USA.
Schafer, J. L., and M. G. Just. 2014. Size dependency of post-disturbance recovery of multi-stemmed resprouting trees. PLoS ONE 9:e105600.
Schafer, J. L., and M. C. Mack. 2010. Short-term effects of fire on soil and plant nutrients in palmetto flatwoods. Plant and Soil 334:433-447.
Schafer, J. L., B. P. Breslow, M. G. Hohmann, and W. A. Hoffmann. 2015. Relative bark thickness is correlated with tree species distributions along a fire frequency gradient. Fire Ecology 11:74-87.
Snijders, T. A., and R. J. Bosker. 1999. Multilevel analysis. Sage, London, UK.
Stambaugh, M. C., R. P. Guyette, and J. M. Marschall. 2011. Longleaf pine (Pinus palustris Mill.) fire scars reveal new details of a frequent fire regime. Journal of Vegetation Science 22:1094-1104.
Steen, D. A., L. M. Conner, L. L. Smith, L. Provencher, J. K. Hiers, S. Pokswinski, B. S. Helms, and C. Guyer. 2013. Bird assemblage response to restoration of fire-suppressed longleaf pine sandhills. Ecological Applications 23:134-147.
Swezey, C. S., B. A. Fitzwater, G. R. Whittecar, S. A. Mahan, C. P. Garrity, W. B. A. Gonzalez, and K. M. Dobbs. 2016. The Carolina Sandhills: quaternary eolian sand sheets and dunes along the updip margin of the Atlantic Coastal Plain province, southeastern United States. Quaternary Research 86:271-286.
Thimonier, A., I. Sedivy, and P. Schleppi. 2010. Estimating leaf area index in different types of mature forest stands in Switzerland: a comparison of methods. European Journal of Forest Research 129:543-562.
Turner, M. G., W. W. Hargrove, R. H. Gardner, and W. H. Romme. 1994. Effects of fire on landscape heterogeneity in Yellowstone National Park, Wyoming. Journal of Vegetation Science 5:731-742.
Tutz, G. 2011. Regression for categorical data. Cambridge University Press, Cambridge, UK.
Veldman, J. W., W. B. Mattingly, and L. A. Brudvig. 2013. Understory plant communities and the functional distinction between savanna trees, forest trees, and pines. Ecology 94:424-434.
Wakeling, J. L., A. C. Staver, and W. J. Bond. 2011. Simply the best: the transition of savanna saplings to trees. Oikos 120:1448-1451.
Walters, J. 1991. Application of ecological principles to the management of endangered species: the case of the red-cockaded woodpecker. Annual Review of Ecology and Systematics 22:505-523.
Werner, P. A. 2012. Growth of juvenile and sapling trees differs with both fire season and understorey type: trade-offs and transitions out of the fire trap in an Australian savanna. Austral Ecology 37:644-657.
Werner, P. A., and L. D. Prior. 2013. Demography and growth of subadult savanna trees: interactions of life history, size, fire season, and grassy understory. Ecological Monographs 83:67-93.
Williams, R. J., G. D. Cook, A. M. Gill, and P. H. R. Moore. 1999. Fire regime, fire intensity and tree survival in a tropical savanna in northern Australia. Australian Journal of Ecology 24:50-59.
Wilson, C. A., R. J. Mitchell, L. R. Boring, and J. J. Hendricks. 2002. Soil nitrogen dynamics in a fire-maintained forest ecosystem: results over a 3-year burn interval. Soil Biology and Biochemistry 34:679-689.
Zald, H. S. J., and C. J. Dunn. 2018. Severe fire weather and intensive forest management increase fire severity in a multi-ownership landscape. Ecological Applications 28:1068-1080.
فهرسة مساهمة: Keywords: Quercus; demographic threshold; fire trap; savanna; stochasticity; tree dynamics
تواريخ الأحداث: Date Created: 20190919 Date Completed: 20200925 Latest Revision: 20200925
رمز التحديث: 20231215
DOI: 10.1002/ecy.2895
PMID: 31529703
قاعدة البيانات: MEDLINE
الوصف
تدمد:1939-9170
DOI:10.1002/ecy.2895