دورية أكاديمية

Cooking shapes the structure and function of the gut microbiome.

التفاصيل البيبلوغرافية
العنوان: Cooking shapes the structure and function of the gut microbiome.
المؤلفون: Carmody RN; Department of Microbiology & Immunology, University of California San Francisco, San Francisco, CA, USA. carmody@fas.harvard.edu.; Center for Systems Biology, Harvard University, Cambridge, MA, USA. carmody@fas.harvard.edu.; Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA. carmody@fas.harvard.edu., Bisanz JE; Department of Microbiology & Immunology, University of California San Francisco, San Francisco, CA, USA., Bowen BP; Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.; DOE Joint Genome Institute, Walnut Creek, CA, USA., Maurice CF; Center for Systems Biology, Harvard University, Cambridge, MA, USA.; Department of Microbiology & Immunology, Microbiome and Disease Tolerance Centre, McGill University, Montreal, Quebec, Canada., Lyalina S; Gladstone Institutes, University of California San Francisco, San Francisco, CA, USA., Louie KB; Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.; DOE Joint Genome Institute, Walnut Creek, CA, USA., Treen D; Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.; DOE Joint Genome Institute, Walnut Creek, CA, USA., Chadaideh KS; Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA., Maini Rekdal V; Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA., Bess EN; Department of Microbiology & Immunology, University of California San Francisco, San Francisco, CA, USA., Spanogiannopoulos P; Department of Microbiology & Immunology, University of California San Francisco, San Francisco, CA, USA., Ang QY; Department of Microbiology & Immunology, University of California San Francisco, San Francisco, CA, USA., Bauer KC; Center for Systems Biology, Harvard University, Cambridge, MA, USA., Balon TW; Department of Medicine, Metabolic Phenotyping Core and In Vivo Imaging System Core, Boston University, Boston, MA, USA., Pollard KS; Gladstone Institutes, University of California San Francisco, San Francisco, CA, USA., Northen TR; Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.; DOE Joint Genome Institute, Walnut Creek, CA, USA., Turnbaugh PJ; Department of Microbiology & Immunology, University of California San Francisco, San Francisco, CA, USA. peter.turnbaugh@ucsf.edu.; Center for Systems Biology, Harvard University, Cambridge, MA, USA. peter.turnbaugh@ucsf.edu.; Chan Zuckerberg Biohub, San Francisco, CA, USA. peter.turnbaugh@ucsf.edu.
المصدر: Nature microbiology [Nat Microbiol] 2019 Dec; Vol. 4 (12), pp. 2052-2063. Date of Electronic Publication: 2019 Sep 30.
نوع المنشور: Journal Article; Research Support, N.I.H., Extramural; Research Support, Non-U.S. Gov't
اللغة: English
بيانات الدورية: Publisher: Nature Publishing Group Country of Publication: England NLM ID: 101674869 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 2058-5276 (Electronic) Linking ISSN: 20585276 NLM ISO Abbreviation: Nat Microbiol Subsets: MEDLINE
أسماء مطبوعة: Original Publication: [London] : Nature Publishing Group, [2016]-
مواضيع طبية MeSH: Cooking* , Diet* , Food* , Gastrointestinal Microbiome*, Bacteria/*classification , Raw Foods/*analysis, Adult ; Animals ; Feces/microbiology ; Female ; Genetic Variation ; Germ-Free Life ; Hot Temperature ; Humans ; Male ; Metabolomics ; Mice ; Mice, Inbred BALB C ; Mice, Inbred C57BL ; RNA, Ribosomal, 16S/genetics ; Transcriptome ; Young Adult
مستخلص: Diet is a critical determinant of variation in gut microbial structure and function, outweighing even host genetics 1-3 . Numerous microbiome studies have compared diets with divergent ingredients 1-5 , but the everyday practice of cooking remains understudied. Here, we show that a plant diet served raw versus cooked reshapes the murine gut microbiome, with effects attributable to improvements in starch digestibility and degradation of plant-derived compounds. Shifts in the gut microbiota modulated host energy status, applied across multiple starch-rich plants, and were detectable in humans. Thus, diet-driven host-microbial interactions depend on the food as well as its form. Because cooking is human-specific, ubiquitous and ancient 6,7 , our results prompt the hypothesis that humans and our microbiomes co-evolved under unique cooking-related pressures.
التعليقات: Comment in: Nat Rev Microbiol. 2019 Dec;17(12):721. (PMID: 31624359)
References: Carmody, R. N. et al. Diet dominates host genotype in shaping the murine gut microbiota. Cell Host Microbe 17, 72–84 (2015). (PMID: 2553280410.1016/j.chom.2014.11.010)
Muegge, B. D. et al. Diet drives convergence in gut microbiome functions across mammalian phylogeny and within humans. Science 332, 970–974 (2011). (PMID: 21596990330360210.1126/science.1198719)
Smits, S. A. et al. Seasonal cycling in the gut microbiome of the Hadza hunter-gatherers of Tanzania. Science 357, 802–806 (2017). (PMID: 28839072589112310.1126/science.aan4834)
Turnbaugh, P. J. et al. The effect of diet on the human gut microbiome: a metagenomic analysis in humanized gnotobiotic mice. Sci. Transl. Med. 1, 6ra14 (2009). (PMID: 20368178289452510.1126/scitranslmed.3000322)
David, L. A. et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature 505, 559–563 (2014). (PMID: 2433621710.1038/nature12820)
Carmody, R. N. & Wrangham, R. W. The energetic significance of cooking. J. Hum. Evol. 57, 379–391 (2009). (PMID: 1973293810.1016/j.jhevol.2009.02.011)
Carmody, R. N. et al. Genetic evidence of human adaptation to a cooked diet. Genome Biol. Evol. 8, 1091–1103 (2016). (PMID: 26979798486069110.1093/gbe/evw059)
Snow, P. & O’Dea, K. Factors affecting the rate of hydrolysis of starch in food. Am. J. Clin. Nutr. 34, 2721–2727 (1981). (PMID: 617203410.1093/ajcn/34.12.2721)
Ze, X., Duncan, S. H., Louis, P. & Flint, H. J. Ruminococcus bromii is a keystone species for the degradation of resistant starch in the human colon. ISME J. 6, 1535 (2012). (PMID: 22343308340040210.1038/ismej.2012.4)
Cowan, M. M. Plant products as antimicrobial agents. Clin. Microbiol. Rev. 12, 564–582 (1999). (PMID: 105159038892510.1128/CMR.12.4.564)
Witte, W. Medical consequences of antibiotic use in agriculture. Science 279, 996–997 (1998). (PMID: 949048710.1126/science.279.5353.996)
Carmody, R. N., Weintraub, G. S. & Wrangham, R. W. Energetic consequences of thermal and nonthermal food processing. Proc. Natl Acad. Sci. USA 108, 19199–19203 (2011). (PMID: 22065771322843110.1073/pnas.1112128108)
Guan, Y., Wu, T., Lin, M. & Ye, J. Determination of pharmacologically active ingredients in sweet potato (Ipomoea batatas L.) by capillary electrophoresis with electrochemical detection. J. Agric. Food Chem. 54, 24–28 (2006). (PMID: 1639017210.1021/jf0508347)
Salyers, A. A., Vercellotti, J. R., West, S. E. & Wilkins, T. D. Fermentation of mucin and plant polysaccharides by strains of Bacteroides from the human colon. Appl. Environ. Microbiol. 33, 319–322 (1977). (PMID: 84895417068410.1128/aem.33.2.319-322.1977)
Martens, E. C. et al. Recognition and degradation of plant cell wall polysaccharides by two human gut symbionts. PLoS Biol. 9, e1001221 (2011). (PMID: 22205877324372410.1371/journal.pbio.1001221)
Sun, T., Laerke, H. N., Jorgenson, H. & Knudsen, K. E. B. The effect of extrusion cooking of different starch sources on the in vitro and in vivo digestibility in growing pigs. Anim. Feed Sci. Technol. 131, 66–85 (2006). (PMID: 10.1016/j.anifeedsci.2006.02.009)
Warren, F. J. et al. Food starch structure impacts gut microbiome composition. mSphere 3, e00086–00018 (2018). (PMID: 29769378595614710.1128/mSphere.00086-18)
Livesey, G. The impact of complex carbohydrates on energy balance. Eur. J. Clin. Nutr. 49, 89S–96S (1995).
Maurice, C. F., Haiser, H. J. & Turnbaugh, P. J. Xenobiotics shape the physiology and gene expression of the active human gut microbiome. Cell 152, 39–50 (2013). (PMID: 23332745355229610.1016/j.cell.2012.10.052)
Maurice, C. F. & Turnbaugh, P. J. Quantifying and identifying the active and damaged subsets of indigenous microbial communities. Methods Enzym. 531, 91–107 (2013). (PMID: 10.1016/B978-0-12-407863-5.00005-8)
Borges, A., Ferreira, C., Saavedra, M. J. & Simoes, M. Antibacterial activity and mode of action of ferulic and gallic acids against pathogenic bacteria. Microb. Drug Resist. 19, 256–265 (2013). (PMID: 2348052610.1089/mdr.2012.0244)
Lou, Z. et al. p-Coumaric acid kills bacteria through dual damage mechanisms. Food Control 25, 550–554 (2012). (PMID: 10.1016/j.foodcont.2011.11.022)
Alves, M. J. et al. Antimicrobial activity of phenolic compounds identified in wild mushrooms, SAR analysis and docking studies. J. Appl. Microbiol. 115, 346–357 (2013). (PMID: 2351051610.1111/jam.12196)
Cho, I. et al. Antibiotics in early life alter the murine colonic microbiome and adiposity. Nature 488, 621–626 (2012). (PMID: 22914093355322110.1038/nature11400)
Butaye, P., Devriese, L. A. & Haesebrouck, F. Antimicrobial growth promoters used in animal feed: effects of less well known antibiotics on Gram-positive bacteria. Clin. Microbiol. Rev. 16, 175–188 (2003). (PMID: 1269209215314510.1128/CMR.16.2.175-188.2003)
Vijay-Kumar, M. et al. Metabolic syndrome and altered gut microbiota in mice lacking toll-like receptor 5. Science 328, 228–231 (2010). (PMID: 20203013471486810.1126/science.1179721)
Breton, J. et al. Gut commensal E. coli proteins activate host satiety pathways following nutrient-induced bacterial growth. Cell Metab. 23, 324–334 (2016). (PMID: 2662110710.1016/j.cmet.2015.10.017)
Perez-Burillo, S. et al. Effect of food thermal processing on the composition of the gut microbiota. J. Agric. Food Chem. 66, 11500–11509 (2018). (PMID: 3034615510.1021/acs.jafc.8b04077)
Koppel, N., Maini Rekdal, V. & Balskus, E. P. Chemical transformation of xenobiotics by the human gut microbiota. Science 356, eaag2770 (2017). (PMID: 2864238110.1126/science.aag2770)
Moeller, A. H. et al. Rapid changes in the gut microbiome during human evolution. Proc. Natl Acad. Sci. USA 111, 16431–16435 (2014). (PMID: 25368157424628710.1073/pnas.1419136111)
Caporaso, J. G. et al. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 7, 335–336 (2010). (PMID: 20383131315657310.1038/nmeth.f.303)
Segata, N. et al. Metagenomic biomarker discovery and explanation. Genome Biol. 12, 1–18 (2011). (PMID: 10.1186/1465-6906-12-S1-P1)
Kuznetsova, A., Brockhoff, P. B. & Christensen, R. H. B. lmerTest package: tests in linear mixed effects models. J. Stat. Softw. 82, 1–26 (2017). (PMID: 10.18637/jss.v082.i13)
Ritchie, M. E. et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 43, e47 (2015). (PMID: 25605792440251010.1093/nar/gkv007)
Law, C. W., Chen, Y., Shi, W. & Smyth, G. K. voom: precision weights unlock linear model analysis tools for RNA-seq read counts. Genome Biol. 15, 1–17 (2014). (PMID: 10.1186/gb-2014-15-2-r29)
Wu, D. et al. ROAST: rotation gene set tests for complex microarray experiments. Bioinformatics 26, 2176–2182 (2010). (PMID: 20610611292289610.1093/bioinformatics/btq401)
Stein, S. E. & Scott, D. R. Optimization and testing of mass spectral library search algorithms for compound identification. J. Am. Soc. Mass Spectrom. 5, 859–866 (1994). (PMID: 2422203410.1016/1044-0305(94)87009-8)
Caporaso, J. G. et al. Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. ISME J. 6, 1621–1624 (2012). (PMID: 22402401340041310.1038/ismej.2012.8)
Caporaso, J. G. et al. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc. Natl Acad. Sci. USA 108, 4516–4522 (2011). (PMID: 2053443210.1073/pnas.1000080107)
DeSantis, T. Z. et al. Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl. Environ. Microbiol. 72, 5069–5072 (2006). (PMID: 16820507148931110.1128/AEM.03006-05)
vegan: Community Ecology Package, R package v. 2.5-2 (cran.R-project, 2018); https://CRAN.R-project.org/package=vegan.
Kembel, S. W. et al. Picante: R tools for integrating phylogenies and ecology. Bioinformatics 26, 1463–1464 (2010). (PMID: 2039528510.1093/bioinformatics/btq166)
Gloor, G. B., Macklaim, J. M., Pawlowsky-Glahn, V. & Egozcue, J. J. Microbiome datasets are compositional: and this is not optional. Front. Microbiol. 8, 2224 (2017). (PMID: 29187837569513410.3389/fmicb.2017.02224)
Silverman, J. D., Washburne, A. D., Mukherjee, S. & David, L. A. A phylogenetic transform enhances analysis of compositional microbiota data. eLife 6, e21887 (2017). (PMID: 28198697532859210.7554/eLife.21887)
Aronesty, E. Comparison of sequencing utility programs. Open Bioinforma. J. 7, 1–8 (2013). (PMID: 10.2174/1875036201307010001)
Kopylova, E., Noé, L. & Touzet, H. SortMeRNA: fast and accurate filtering of ribosomal RNAs in metatranscriptomic data. Bioinformatics 28, 3211–3217 (2012). (PMID: 2307127010.1093/bioinformatics/bts611)
Bray, N. L., Pimentel, H., Melsted, P. & Pachter, L. Near-optimal probabilistic RNA-seq quantification. Nat. Biotechnol. 34, 525–527 (2016). (PMID: 2704300210.1038/nbt.3519)
Kanehisa, M. et al. KEGG for linking genomes to life and the environment. Nucleic Acids Res. 36, D480–D484 (2008). (PMID: 1807747110.1093/nar/gkm882)
Buchfink, B., Xie, C. & Huson, D. H. Fast and sensitive protein alignment using DIAMOND. Nat. Methods 12, 59–60 (2015). (PMID: 2540200710.1038/nmeth.3176)
Strauber, H. & Muller, S. Viability states of bacteria: specific mechanisms of selected probes. Cytometry A 77, 623–634 (2010). (PMID: 2058328010.1002/cyto.a.20920)
Bouvier, T., Del Giorgio, P. A. & Gasol, J. M. A comparative study of the cytometric characteristics of high and low nucleic-acid bacterioplankton cells from different aquatic ecosystems. Environ. Microbiol. 9, 2050–2066 (2007). (PMID: 1763554910.1111/j.1462-2920.2007.01321.x)
Gasol, J. M., Zweifel, U. L., Peters, F., Fuhrman, J. A. & Hagström, Å. Significance of size and nucleic acid content heterogeneity as measured by flow cytometry in natural planktonic bacteria. Appl. Environ. Microbiol. 65, 4475–4483 (1999). (PMID: 105080789159610.1128/AEM.65.10.4475-4483.1999)
Lebaron, P., Servais, P., Agogue, H., Courties, C. & Joux, F. Does the high nucleic acid content of individual bacterial cells allow us to discriminate between active cells and inactive cells in aquatic systems? Appl. Environ. Microbiol. 67, 1775–1782 (2001). (PMID: 112826329279610.1128/AEM.67.4.1775-1782.2001)
Nayfach, S., Fischbach, M. A. & Pollard, K. S. MetaQuery: a web server for rapid annotation and quantitative analysis of specific genes in the human gut microbiome. Bioinformatics 31, 3368–3370 (2015). (PMID: 26104745459590310.1093/bioinformatics/btv382)
CLSI. Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically; Approved Standard 9th edn (Clinical and Laboratory Standards Institute, 2012).
Want, E. J. et al. Global metabolic profiling procedures for urine using UPLC-MS. Nat. Protoc. 5, 1005–1018 (2010). (PMID: 2044854610.1038/nprot.2010.50)
Dunn, W. B. et al. Procedures for large-scale metabolic profiling of serum and plasma using gas chromatography and liquid chromatography coupled to mass spectrometry. Nat. Protoc. 6, 1060–1083 (2011). (PMID: 2172031910.1038/nprot.2011.335)
Ivanisevic, J. et al. Toward ‘omic scale metabolite profiling: a dual separation-mass spectrometry approach for coverage of lipid and central carbon metabolism. Anal. Chem. 85, 6876–6884 (2013). (PMID: 23781873376196310.1021/ac401140h)
Mahieu, N. G., Spalding, J. L., Gelman, S. J. & Patti, G. J. Defining and detecting complex peak relationships in mass spectral data: the mz.unity algorithm. Anal. Chem. 88, 9037–9046 (2016). (PMID: 27513885642782110.1021/acs.analchem.6b01702)
Bowen, B. P. & Northen, T. R. Dealing with the unknown: metabolomics and metabolite atlases. J. Am. Soc. Mass Spectrom. 21, 1471–1476 (2010). (PMID: 2045278210.1016/j.jasms.2010.04.003)
Katajamaa, M., Miettinen, J. & Orešič, M. MZmine: toolbox for processing and visualization of mass spectrometry based molecular profile data. Bioinformatics 22, 634–636 (2006). (PMID: 1640379010.1093/bioinformatics/btk039)
Sumner, L. W. et al. Proposed minimum reporting standards for chemical analysis. Metabolomics 3, 211–221 (2007). (PMID: 24039616377250510.1007/s11306-007-0082-2)
Yao, Y. et al. Analysis of metabolomics datasets with high-performance computing and metabolite atlases. Metabolites 5, 431–442 (2015). (PMID: 26287255458880410.3390/metabo5030431)
Thevenot, E. A., Roux, A., Xu, Y., Ezan, E. & Junot, C. Analysis of the human adult urinary metabolome variations with age, body mass index and gender by implementing a comprehensive workflow for univariate and OPLS statistical analyses. J. Proteome Res. 14, 3322–3335 (2015). (PMID: 2608881110.1021/acs.jproteome.5b00354)
Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer, 2016).
معلومات مُعتمدة: F32 DK101154 United States DK NIDDK NIH HHS; R01 HL122593 United States HL NHLBI NIH HHS
المشرفين على المادة: 0 (RNA, Ribosomal, 16S)
تواريخ الأحداث: Date Created: 20191002 Date Completed: 20200707 Latest Revision: 20220417
رمز التحديث: 20231215
مُعرف محوري في PubMed: PMC6886678
DOI: 10.1038/s41564-019-0569-4
PMID: 31570867
قاعدة البيانات: MEDLINE
الوصف
تدمد:2058-5276
DOI:10.1038/s41564-019-0569-4