دورية أكاديمية

Interferon-gamma carrying nanoemulsion with immunomodulatory and anti-tumor activities.

التفاصيل البيبلوغرافية
العنوان: Interferon-gamma carrying nanoemulsion with immunomodulatory and anti-tumor activities.
المؤلفون: Ribeiro EB; Institute of Physics, University of Brasilia, Brasilia-DF, Brazil.; Institute of Health Science, Federal University of Mato Grosso, Sinop, MT, Brazil., de Marchi PGF; Institute of Biological and Health Science, Federal University of Mato Grosso, Barra do Garças, MT, Brazil., Honorio-França AC; Institute of Biological and Health Science, Federal University of Mato Grosso, Barra do Garças, MT, Brazil., França EL; Institute of Biological and Health Science, Federal University of Mato Grosso, Barra do Garças, MT, Brazil., Soler MAG; Institute of Physics, University of Brasilia, Brasilia-DF, Brazil.
المصدر: Journal of biomedical materials research. Part A [J Biomed Mater Res A] 2020 Feb; Vol. 108 (2), pp. 234-245. Date of Electronic Publication: 2019 Oct 16.
نوع المنشور: Journal Article; Research Support, Non-U.S. Gov't
اللغة: English
بيانات الدورية: Publisher: John Wiley & Sons Country of Publication: United States NLM ID: 101234237 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1552-4965 (Electronic) Linking ISSN: 15493296 NLM ISO Abbreviation: J Biomed Mater Res A Subsets: MEDLINE
أسماء مطبوعة: Original Publication: Hoboken, NJ : John Wiley & Sons, c2002-
مواضيع طبية MeSH: Antineoplastic Agents/*administration & dosage , Drug Carriers/*chemistry , Emulsions/*chemistry , Immunologic Factors/*administration & dosage , Interferon-gamma/*administration & dosage, Adult ; Antineoplastic Agents/pharmacology ; Cells, Cultured ; Female ; Humans ; Immunologic Factors/pharmacology ; Interferon-gamma/pharmacology ; MCF-7 Cells ; Male ; Neoplasms/drug therapy ; Young Adult
مستخلص: The therapeutic administration of cytokines has been introduced aiming to modulate the immune response system, seeking for different approaches to face pathologies such as cancer, auto immune and infectious diseases. The objective of this study was to investigate the effects of a stable oil-in-water (O/W) nanoemulsion system carrying the cytokine Interferon gamma (IFN-γ) on the activity of phagocytes and MCF-7 human breast cancer cells. Nanoemulsions were prepared through ultra-homogenization, and they consisted of distilled water, triglycerides of capric acid/caprylic, sorbitan-oleate, polysorbate 80, and 1-butanol. IFN-γ (100 ng ml -1 ) was incorporated into two O/W nanoemulsion formulations, and these formulations were characterized in terms of their preliminary and accelerated physicochemical stability, rheological properties, droplet size, polydispersity and surface charge. We identified the most optimal IFN-γ nanoemulsion (IFN-γNE2), which remained stable under extreme temperature variations for 90 days, contained an average dose of 97 ng ml -1 of IFN-γ and exhibited a biocompatible pH and a relative stable rheological profile. Cell viability and intracellular Ca 2+ release assays conducted showed that IFN-γNE2 reduced the cell viability of MCF-7 cells without affecting the cell viability of phagocytes. Furthermore, IFN-γNE2 was able to induce cellular activity of phagocytes as evidenced by increased intracellular Ca 2+ release in these cells. Our findings on this IFN-γ nanoemulsion suggest that it can be a promising therapeutic agent for immunostimulation and cancer treatment.
(© 2019 Wiley Periodicals, Inc.)
References: Acharya, D. P., & Hartley, P. G. (2012). Progress in microemulsion characterization. Current Opinion in Colloid & Interface Science, 17(5), 274-280.
Akagi, T., Baba, M., & Akashi, M. (2011). Biodegradable nanoparticles as vaccine adjuvants and delivery systems: Regulation of immune responses by nanoparticle-based vaccine. In: Kunugi S., Yamaoka T. (eds) Polymers in Nanomedicine. Advances in Polymer Science, 247, 31-64. Berlin, Heidelberg: Springer.
Andrechek, E. R., & Muller, W. J. (2000). Tyrosine kinase signalling in breast cancer tyrosine kinase-mediated signal transduction in transgenic mouse models of human breast cancer. Breast Cancer Research, 2(3), 211-216.
Bam, N. B., Randolph, T., & Cleland, J. (1995). Stability of protein formulations : Investigation of surfactant effects by a novel EPR spectroscopic technique. Pharmaceutical Research, 12, 2-11.
Barratt, G. (2000). Therapeutic applications of colloidal drug carriers. Pharmaceutical Science & Technology Today, 3(5), 163-171.
Bernardi, D. S., Pereira, T. A., Maciel, N. R., Bortoloto, J., Viera, G. S., Oliveira, G. C., & Rocha-Filho, P. A. (2011). Formation and stability of oil-in-water nanoemulsions containing rice bran oil: in vitro and in vivo assessments. Journal of Nanobiotechnology, 9(1), 2-9.
Billiau, A., & Matthys, P. (2009). Interferon-Y: A historical perspective. Cytokine & Growth Factor Reviews, 20(2), 97-113.
Bouchemal, K., Briançon, S., Perrier, E., & Fessi, H. (2004). Nano-emulsion formulation using spontaneous emulsification: Solvent, oil and surfactant optimisation. International Journal of Pharmaceutics, 280, 241-251.
Briggs, T., & Arinzeh, T. L. (2013). Examining the formulation of emulsion electrospinning for improving the release of bioactive proteins from electrospun fibers. Journal of Biomedical Materials Research. Part A, 102(3), 674-684.
Bruxel, F., Laux, M., Wild, L. B., Fraga, M., Koester, L. S., & Teixeira, H. F. (2012). Nanoemulsões como sistemas de liberação parenteral de fármacos. Quimica Nova, 35(4), 1827-1840.
Capek, I. (2002). Sterically and electrosterically stabilized emulsion polymerization. Kinetics and preparation. Advances in Colloid and Interface Science, 99, 77-162.
Chime, S. A., Kenechukwu, F. C., & Attama, A. A. (2014). In: Ali Demir Seze (Ed.), Application of Nanotechnology in Drug Delivery. Intech Open, pp. 77-126, Viena, Austria.
Christian, D. A., & Hunter, C. A. (2013). Particle-mediated delivery of cytokines for immunotherapy. Immunotherapy, 4(4), 425-441.
de Melo Cotrin, A. C., Honorio-frança, A. C., & França, E. L. (2016). Rheology analysis can be added in thermal stability test for design microemulsion materials. Biointerface Research in Applied Chemistry, 6(2), 1128-1136.
Dengler, W. A., Schulte, J., Berger, D. P., Mertelsmann, R., & Fiebig, H. H. (1995). Development of a propidium iodide fluorescence assay for proliferation and cytotoxicity assays. Anti-Cancer Drugs, 6(4), 522-532.
Donsì, F., Annunziata, M., Vincensi, M., & Ferrari, G. (2012). Design of nanoemulsion-based delivery systems of natural antimicrobials: Effect of the emulsifier. Journal of Biotechnology, 159(4), 342-350.
Dunn, G. P., Koebel, C. M., & Schreiber, R. D. (2006). Interferons, immunity and cancer immunoediting. Nature Reviews. Immunology, 6, 836-848.
Dutta, S., & Ebling, W. (1997). Emulsion formulation reduces Propofol's dose requirements and enbances safety. Anesthesiology, 87, 1394-1405.
Ealick, S. E., Cook, W. J., Vijay-Kumar, S., Carson, M., Nagabhushan, T. L., Trotta, P. P., & Bugg, C. E. (1991). Three-dimensional structure of recombinant human interferon-gamma. Science, 252(5006), 698-702.
Fagundes, D. L., França, E. L., Morceli, G., Rudge, M. V., Calderon, M., & Honorio-França, A. C. (2013). The role of cytokines in the functional activity of phagocytes in blood and colostrum of diabetic mothers. Clinical & Developmental Immunology, 2013, 1-8.
Fernandes, A. R., Dias-Ferreira, J., Cabral, C., Garcia, M. L., & Souto, E. B. (2018). Release kinetics and cell viability of ibuprofen nanocrystals produced by melt-emulsification. Colloids and Surfaces B: Biointerfaces, 166, 24-28.
Fernandez, P., André, V., Rieger, J., & Kühnle, A. (2004). Nano-emulsion formation by emulsion phase inversion. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 251, 53-58.
Ferrari, D., Pinton, P., Szabadkai, G., Chami, M., Campanella, M., Pozzan, T., & Rizzuto, R. (2002). Endoplasmic reticulum, Bcl-2 and Ca 2+ handling in apoptosis. Cell Calcium, 32, 413-420.
França, E. L., Ribeiro, E. B., Scherer, E. F., Cantarini, D. G., Pessôa, R. S., França, F. L., & Honorio-França, A. C. (2014). Effects of Momordica charantia L. on the blood rheological properties in diabetic patients. BioMed Research International, 2014(840379), 1-8.
Fryd, M. M., & Mason, T. G. (2012). Advanced Nanoemulsions. Annual Review of Physical Chemistry, 63, 493-518.
Gessani, S., & Belardelli, F. (1998). IFN-gamma expression in macrophages and its possible biological significance. Cytokine & Growth Factor Reviews, 9(2), 117-123.
Ghosh, P., Han, G., De, M., Kim, C. K., & Rotello, V. M. (2008). Gold nanoparticles in delivery applications. Advanced Drug Delivery Reviews, 60, 1307-1315.
Goddeeris, C., Cuppo, F., Reynaers, H., Bouwman, W. G., & Van den Mooter, G. (2006). Light scattering measurements on microemulsions: Estimation of droplet sizes. International Journal of Pharmaceutics, 312(1-2), 187-195. https://doi.org/10.1016/j.ijpharm.2006.01.037.
Godugu, C., Doddapaneni, R., Safe, S. H., & Singh, M. (2016). Novel diindolylmethane derivatives based NLC formulations to improve the oral bioavailability and anticancer effects in triple negative breast cancer. European Journal of Pharmaceutics and Biopharmaceutics, 108, 168-179.
Gomes, D. S. B., Paterno, L. G., Santos, A. B., Garay, A. V., Mertz, D., Freitas, S. M., & Soler, M. A. G. (2018). New insights on the formation of gold nanoparticles and pluronic nanocomposites: Kinetics and thermodynamics parameters. Journal of Molecular Liquids, 268, 181-189.
Gustmann, P. C., Cotrim, A. C. D. M., Pires, E. M., Andrighetti, C. R., Valladão, D. M. S., & Ribeiro, E. B. (2017). Development of Brazil nut oil microemulsion as vehicle for levamisole. Journal of Applied Pharmaceutical Science, 7(08), 92-98.
Hara C de, C. P., Honório-França, A. C., Fagundes, D. L. G., Guimarães, P. C. L., & França, E. L. (2013). Melatonin nanoparticles adsorbed to polyethylene glycol microspheres as activators of human colostrum macrophages. Journal of Nanomaterials, 2, 1-8.
Hernandes, M. R. G., Moraes, L. C. A., Ribeiro, E. B., Fagundes, D. L. G., Honorio-França, A. C., & França, E. L. (2017). In vitro immunomodulatory effects of microemulsions with levamisole delivery systems on blood phagocytes interacting with Giardia lamblia. Parasitology International, 66, 299-304.
Honary, S., & Zahir, F. (2013). Effect of zeta potential on the properties of nano-drug delivery systems-a review (part 1). Tropical Journal of Pharmaceutical Research, 12(April), 255-264.
Honório-França, A. C., de Morais, T. C., Silva, R. R., Rosa, J. C. S., Venturini, L. G. R., & França, E. L. (2013). Immunomodulation by cytokines in chronobiological vision. World Journal of Pharmaceutical Research, 2(5), 1325-1345.
Honorio-França, A. C., Nunes, G. T., Fagundes, D. L., de Marchi, P. G., Fernandes, R. T., França, J. L., & França, E. L. (2016). Intracellular calcium is a target of modulation of apoptosis in McF-7 cells in the presence of IgA adsorbed to polyethylene glycol. OncoTargets and Therapy, 9, 617-626.
Ikeda, H., Old, L. J., & Schreiber, R. D. (2002). The roles of IFN in protection against tumor development and cancer immunoediting. Cytokine & Growth Factor Reviews, 13(2), 95-109.
Kopach, O., Zheng, K., Dong, L., Sapelkin, A., Voitenko, N., Sukhorukov, G. B., & Rusakov, D. A. (2018). Nano-engineered microcapsules boost the treatment of persistent pain. Drug Delivery, 25(1), 435-447.
Kotta, S., Khan, A. W., Ansari, S. H., Sharma, R. K., & Ali, J. (2015). Formulation of nanoemulsion: A comparison between phase inversion composition method and high-pressure homogenization method. Drug Delivery, 22(4), 455-466.
Kumar, R., & Wang, R. (2002). Protein kinases in mammary gland development and cancer. Microscopy Research and Technique, 57, 49-57.
Lawrence, M. J., & Rees, G. D. (2012). Microemulsion-based media as novel drug delivery systems. Advanced Drug Delivery Reviews, 64, 175-193.
Liu, J., Qiu, Z., Wang, S., Zhou, L., & Zhang, S. (2010). A modified double-emulsion method for the preparation of daunorubicin-loaded polymeric nanoparticle with enhanced in vitro anti-tumor activity. Biomedical Materials, 5(6), 1-10.
Mahendran, V., & Philip, J. (2014a). Non-enzymatic glucose detection using magnetic nanoemulsions. Applied Physics Letters, 123110(105), 1-4.
Mahendran, V., & Philip, J. (2014b). Influence of ag+ interaction on 1D droplet array spacing and the repulsive forces between stimuli-responsive nanoemulsion droplets. Langmuir, 30, 10213-10220.
Mahendran, V., & Philip, J. (2016). Macromolecular conformation changes at oil-water interface in the presence of cations. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 497, 90-100. https://doi.org/10.1016/j.colsurfa.2016.02.031.
Mandal, A. S., Biswas, N., Karim, K. M., Guha, A., Chatterjee, S., Behera, M., & Kuotsu, K. (2010). Drug delivery system based on chronobiology-a review. Journal of Controlled Release, 147(3), 314-325.
Maniasso, N. (2001). Ambientes micelares em química analítica. Quimica Nova, 24(1), 87-93.
McClements, D. J. (2012). Nanoemulsions versus microemulsions: Terminology, differences, and similarities. Soft Matter, 8, 1719.
Miller, C. H. T., Maher, S. G., & Young, H. A. (2009). Clinical use of interferon- γ. Annals of the New York Academy of Sciences, 79, 69-79.
Mojic, M., Takeda, K., & Hayakawa, Y. (2018). The dark side of IFN-γ: Its role in promoting cancer immunoevasion. International Journal of Molecular Sciences, 19(89), 1-13.
Moraes, L. C., França, E. L., Pessoa, R. S., Fagundes, D. L., Hernandes, M. G., Ribeiro, V. P., & Honorio-França, A. C. (2015). The effect of IFN-γ and TGF-β in the functional activity of mononuclear cells in the presence of Entamoeba histolytica. Parasites & Vectors, 8(1), 413-421.
Mora-Huertas, C. E., Fessi, H., & Elaissari, A. (2010). Polymer-based nanocapsules for drug delivery. International Journal of Pharmaceutics, 385(1-2), 113-142.
Oliveira, A. E. M. F. M., Duarte, J. L., Cruz, R. A. S., Da Conceição, E. C., Carvalho, J. C. T., & Fernandes, C. P. (2017). Utilization of dynamic light scattering to evaluate Pterodon emarginatus oleoresin-based nanoemulsion formation by non-heating and solvent-free method. Brazilian Journal of Pharmacognosy, 27(3), 401-406.
Olov, N., Bagheri-khoulenjani, S., & Mirzadeh, H. (2018). Combinational drug delivery using nanocarriers for breast cancer treatments: A review. Journal of Biomedical Materials Research. Part A, 106A(8), 2272-2283.
Onoue, S., Yamada, S., & Chan, H. K. (2014). Nanodrugs: Pharmacokinetics and safety. International Journal of Nanomedicine, 9, 1025-1037.
Orrenius, S., Zhivotovsky, B., & Nicotera, P. (2003). Regulation of cell death: The calcium-apoptosis link. Nature Reviews. Molecular Cell Biology, 4(7), 552-565.
Pardhiya, S., & Paulraj, R. (2014). Role of nanoparticles in targeted drug delivery system. In S. Massadeh (Ed.), Nanotechnology in drug delivery (pp. 21-51). New Delhi: One Central Press (OCP).
Pessoa, R. S., França, E. L., Ribeiro, E. B., Abud, N. G., & Honorio, A. C. (2015). Microemulsion of babassu oil as a natural product to improve human immune system function. Drug Design, Development and Therapy, 9, 21-31.
Pestana, K. C., Formariz, T. P., Franzini, C. M., Sarmento, V. H., Chiavacci, L. A., Scarpa, M. V., & Oliveira, A. G. (2008). Oil-in-water lecithin-based microemulsions as a potential delivery system for amphotericin B. Colloids and Surfaces. B, Biointerfaces, 66(2), 253-259.
Philip, J., Gnanaprakash, G., Jayakumar, T., Kalyanasundaram, P., & Raj, B. (2003). Three distinct scenarios under polymer, surfactant, and colloidal interaction. Macromolecules, 36, 9230-9236.
Philip, J., Jaykumar, T., Kalyanasundaram, P., & Raj, B. (2002). Effect of polymer-surfactant association on colloidal force. Physics Review, 66, 1-8.
Philip, J., Prakash, G. G., Jaykumar, T., Kalyanasundaram, P., & Raj, B. (2002). Stretching and collapse of neutral polymer layers under association with ionic surfactants. Physical Review Letters, 89(26), 1-4.
Pratap, S. B., Brajesh, K., Jain, S. K., & Kausar, S. (2012). Development and characterization of a nanoemulsion gel formulation for transdermal delivery of carvedilol. International Journal of Drug Development and Research, 4(1), 151-161.
Py-Daniel, K. R., Namban, J. S., de Andrade, L. R., de Souza, P. E. N., Paterno, L. G., Azevedo, R. B., & Soler, M. A. G. (2016). Highly efficient photodynamic therapy colloidal system based on chloroaluminum phthalocyanine/pluronic micelles. European Journal of Pharmaceutics and Biopharmaceutics, 103, 23-31.
Radulescu, M., Popescu, S., Ficai, D., Sonmez, M., Oprea, O., Spoiala, A., & Andronescu, E. (2018). Advances in drug delivery systems, from 0 to 3D superstructures. Current Drug Targets, 19(4), 393-405.
Ribeiro, E. B., Honório-França, A. C., França, E. L., & Soler, M. A. G. (2016). Design and development of nanoemulsion systems containing interferon gamma. Protein and Peptide Letters, 23, 626-638.
Ribeiro, E. B., Kelly, P., Lanes, D., Galdeano, N., Chaud, A., Pessoa, R. S., & França, E. L. (2015). Microemulsions with levamisole delivery systems as novel immunomodulating agents with potential for amebiasis therapies. Science of Advanced Materials, 7, 15-27.
Rojas, O., Koetz, J., Kosmella, S., Tiersch, B., Wacker, P., & Kramer, M. (2009). Structural studies of ionic liquid-modified microemulsions. Journal of Colloid and Interface Science, 333(2), 782-790.
Sajan, J., Cinu, T. A., Chacko, A. J., Litty, J., & Jaseeda, T. (2009). Chronotherapeutics and chronotherapeutic drug delivery systems. Tropical Journal of Pharmaceutical Research, 8(5), 467-475.
Sánchez-López, E., Espina, M., Doktorovova, S., Souto, E. B., & García, M. L. (2017). Lipid nanoparticles (SLN, NLC): Overcoming the anatomical and physiological barriers of the eye-Part II-Ocular drug-loaded lipid nanoparticles. European Journal of Pharmaceutics and Biopharmaceutics, 110, 58-69.
Sanchez-Muñoz, F. (2008). Role of cytokines in inflammatory bowel disease. World Journal of Gastroenterology, 14(27), 4280.
Schroder, K., Hertzog, P. J., Ravasi, T., & Hume, D. A. (2004). Interferon-γ: An overview of signals, mechanisms and functions. Journal of Leukocyte Biology, 75(2), 163-189.
Shafiq, S., Shakeel, F., Talegaonkar, S., Ahmad, F. J., Khar, R. K., & Ali, M. (2007). Development and bioavailability assessment of ramipril nanoemulsion formulation. European Journal of Pharmaceutics and Biopharmaceutics, 66(2), 227-243.
Shi, Y., Sun, X., Zhang, L., Sun, K., Li, K., Li, Y., & Zhang, Q. (2018). Fc-modified exenatide-loaded nanoparticles for oral delivery to improve hypoglycemic effects in mice. Scientific Reports, 8(1), 1-9.
Solans, C., Izquierdo, P., Nolla, J., Azemar, N., & Garcia-Celma, M. J. (2005). Nano-emulsions. Current Opinion in Colloid & Interface Science, 10, 102-110.
Soler, M. A. G., Lima, E. C. D., Nunes, E. S., Silva, F. L. R., Oliveira, A. C., Azevedo, R. B., & Morais, P. C. (2011). Spectroscopic study of maghemite nanoparticles surface-grafted with DMSA. The Journal of Physical Chemistry. A, 115(6), 1003-1008.
Soler, M. A. G., & Paterno, L. G. (2017). Magnetic nanomaterials. In F. Leite, M. Ferreira, & O. N. Oliveira, Jr. (Eds.), Nanostructures (pp. 147-186). Oxford, United Kingdom: Elsevier.
Tadros, T., Izquierdo, P., Esquena, J., & Solans, C. (2004). Formation and stability of nano-emulsions. Advances in Colloid and Interface Science, 108-109, 303-318.
Van Slooten, M. L., Boerman, O., Romøren, K., Kedar, E., Crommelin, D. J., & Storm, G. (2001). Liposomes as sustained release system for human interferon-gamma: Biopharmaceutical aspects. Biochimica et Biophysica Acta, 1530, 134-145.
Van Slooten, M. L., Visser, A. J., Van Hoek, A., Storm, G., Crommelin, D. J., & Jiskoot, W. (2000). Conformational stability of human interferon-gamma on association with and dissociation from liposomes. Journal of Pharmaceutical Sciences, 89(12), 1605-1619.
Whitesides, G. M. (2005). Nanoscience, nanotechnology, and chemistry. Small, 1(2), 172-179.
Yalçınöz, Ş., & Erçelebi, E. (2018). Potential applications of nano-emulsions in the food systems: An update. Materials Research Express, 5(6), 1-17.
Younes, H. M., & Amsden, B. G. (2002). Interferon-gamma therapy: Evaluation of routes of administration and delivery systems. Journal of Pharmaceutical Sciences, 91(1), 2-17. https://doi.org/10.1002/jps.10007.
Zaibudeen, A. W., & Philip, J. (2017). Multi-stimuli responsive nanofluid with easy-to-visualize structural color patterns. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 518, 98-108.
Zaibudeen, A. W., & Philip, J. (2018a). Magnetic nanofluid based non-enzymatic sensor for urea detection. Sensors and Actuators B: Chemical, 255, 720-728.
Zaibudeen, A. W., & Philip, J. (2018b). Temperature and pH sensor based on functionalized magnetic nanofluid. Sensors and Actuators B: Chemical, 268, 338-349.
Zaibudeen, A. W., & Philip, J. (2019). Adsorption of bovine serum albumin at oil-water interface in the presence of polyelectrolytes and nature of interaction forces. Colloids and Surfaces, A: Physicochemical and Engineering Aspects, 566, 38-47.
Zaidi, M. R., & Merlino, G. (2011). The two faces of interferon-γ in cancer. Clinical Cancer Research, 17(19), 6118-6124.
فهرسة مساهمة: Keywords: IFN-γ; MCF-7; blood phagocytes; cancer; cell viability; nanoemulsion
المشرفين على المادة: 0 (Antineoplastic Agents)
0 (Drug Carriers)
0 (Emulsions)
0 (Immunologic Factors)
82115-62-6 (Interferon-gamma)
تواريخ الأحداث: Date Created: 20191007 Date Completed: 20210730 Latest Revision: 20210730
رمز التحديث: 20231215
DOI: 10.1002/jbm.a.36808
PMID: 31587469
قاعدة البيانات: MEDLINE
الوصف
تدمد:1552-4965
DOI:10.1002/jbm.a.36808