دورية أكاديمية

Unique Shine-Dalgarno Sequences in Cyanobacteria and Chloroplasts Reveal Evolutionary Differences in Their Translation Initiation.

التفاصيل البيبلوغرافية
العنوان: Unique Shine-Dalgarno Sequences in Cyanobacteria and Chloroplasts Reveal Evolutionary Differences in Their Translation Initiation.
المؤلفون: Wei Y; Department of Biology, University of Ottawa, Ontario, Canada., Xia X; Department of Biology, University of Ottawa, Ontario, Canada.; Ottawa Institute of Systems Biology, University of Ottawa, Ontario, Canada.
المصدر: Genome biology and evolution [Genome Biol Evol] 2019 Nov 01; Vol. 11 (11), pp. 3194-3206.
نوع المنشور: Journal Article; Research Support, Non-U.S. Gov't
اللغة: English
بيانات الدورية: Publisher: Oxford University Press Country of Publication: England NLM ID: 101509707 Publication Model: Print Cited Medium: Internet ISSN: 1759-6653 (Electronic) Linking ISSN: 17596653 NLM ISO Abbreviation: Genome Biol Evol Subsets: MEDLINE
أسماء مطبوعة: Original Publication: Oxford, UK : Oxford University Press
مواضيع طبية MeSH: Chloroplasts/*genetics , Cyanobacteria/*genetics , Prokaryotic Initiation Factors/*genetics, 5' Untranslated Regions ; Evolution, Molecular ; Symbiosis/genetics
مستخلص: Microorganisms require efficient translation to grow and replicate rapidly, and translation is often rate-limited by initiation. A prominent feature that facilitates translation initiation in bacteria is the Shine-Dalgarno (SD) sequence. However, there is much debate over its conservation in Cyanobacteria and in chloroplasts which presumably originated from endosymbiosis of ancient Cyanobacteria. Elucidating the utilization of SD sequences in Cyanobacteria and in chloroplasts is therefore important to understand whether 1) SD role in Cyanobacterial translation has been reduced prior to chloroplast endosymbiosis or 2) translation in Cyanobacteria and in plastid has been subjected to different evolutionary pressures. To test these alternatives, we employed genomic, proteomic, and transcriptomic data to trace differences in SD usage among Synechocystis species, Microcystis aeruginosa, cyanophages, Nicotiana tabacum chloroplast, and Arabidopsis thaliana chloroplast. We corrected their mis-annotated 16S rRNA 3' terminus using an RNA-Seq-based approach to determine their SD/anti-SD locational constraints using an improved measurement DtoStart. We found that cyanophages well-mimic Cyanobacteria in SD usage because both have been under the same selection pressure for SD-mediated initiation. Whereas chloroplasts lost this similarity because the need for SD-facilitated initiation has been reduced in plastids having much reduced genome size and different ribosomal proteins as a result of host-symbiont coevolution. Consequently, SD sequence significantly increases protein expression in Cyanobacteria but not in chloroplasts, and only Cyanobacterial genes compensate for a lack of SD sequence by having weaker secondary structures at the 5' UTR. Our results suggest different evolutionary pressures operate on translation initiation in Cyanobacteria and in chloroplast.
(© The Author(s) 2019. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.)
References: BMC Bioinformatics. 2007 May 22;8:170. (PMID: 17519041)
Nature. 1975 Mar 6;254(5495):34-8. (PMID: 803646)
Plant J. 2009 Feb;57(3):436-45. (PMID: 18939966)
DNA Res. 1996 Aug 31;3(4):225-32. (PMID: 8946162)
Plant Cell. 1999 May;11(5):957-70. (PMID: 10330479)
J Gen Virol. 2015 May;96(Pt 5):1169-79. (PMID: 25614589)
Proc Natl Acad Sci U S A. 2010 Feb 23;107(8):3645-50. (PMID: 20133581)
Mol Biol Evol. 2018 Jun 1;35(6):1550-1552. (PMID: 29669107)
DNA Res. 1997 Jun 30;4(3):179-84. (PMID: 9330905)
PLoS One. 2008 Apr 23;3(4):e1994. (PMID: 18431481)
Proteomics. 2015 Sep;15(18):3163-8. (PMID: 25656970)
Plant Physiol. 2019 May;180(1):654-681. (PMID: 30862726)
FEBS Lett. 1998 Jul 3;430(3):257-60. (PMID: 9688550)
Plant J. 2001 Feb;25(3):261-70. (PMID: 11208018)
Mol Cell Proteomics. 2010 Dec;9(12):2678-89. (PMID: 20858728)
Bioinformatics. 2014 Aug 1;30(15):2114-20. (PMID: 24695404)
Plant J. 2018 Feb;93(3):545-565. (PMID: 29172250)
Annu Rev Genet. 1998;32:437-59. (PMID: 9928487)
Biochimie. 2015 Jul;114:18-29. (PMID: 25792421)
Plant Cell. 2018 Apr;30(4):745-770. (PMID: 29610211)
Nucleic Acids Res. 2017 Apr 20;45(7):3922-3931. (PMID: 28334743)
Nat Rev Genet. 2004 Feb;5(2):123-35. (PMID: 14735123)
Proc Natl Acad Sci U S A. 1974 Apr;71(4):1342-6. (PMID: 4598299)
Biochem Biophys Res Commun. 2006 Mar 17;341(3):675-8. (PMID: 16438936)
Proc Natl Acad Sci U S A. 2019 May 14;116(20):10162-10167. (PMID: 30988197)
Mol Cell Proteomics. 2010 Jun;9(6):1063-84. (PMID: 20061580)
Plant Biotechnol J. 2016 Sep;14(9):1862-75. (PMID: 27507797)
Nucleic Acids Res. 2003 Jul 1;31(13):3429-31. (PMID: 12824340)
PLoS Comput Biol. 2009 Dec;5(12):e1000605. (PMID: 20011109)
Nucleic Acids Res. 1993 Aug 25;21(17):4019-23. (PMID: 7690472)
Proc Natl Acad Sci U S A. 2010 Apr 6;107(14):6382-7. (PMID: 20308567)
Mol Gen Genet. 1998 Feb;257(3):271-82. (PMID: 9520261)
Science. 2009 Apr 10;324(5924):255-8. (PMID: 19359587)
Genome Res. 1998 Mar;8(3):186-94. (PMID: 9521922)
Mol Gen Genet. 1983;191(3):378-81. (PMID: 6355760)
PLoS Genet. 2011 Jun;7(6):e1002155. (PMID: 21731509)
J Biol Chem. 2013 May 3;288(18):12574-9. (PMID: 23532845)
DNA Res. 2007 Dec 31;14(6):247-56. (PMID: 18192279)
Sci Rep. 2017 Dec 15;7(1):17639. (PMID: 29247194)
Gene. 2008 Jun 15;416(1-2):44-7. (PMID: 18420359)
G3 (Bethesda). 2017 Dec 4;7(12):3839-3848. (PMID: 29079682)
BMC Bioinformatics. 2016 Feb 25;17:103. (PMID: 26911985)
Plant Cell Physiol. 2004 Jan;45(1):114-7. (PMID: 14749493)
J Bacteriol. 1997 Jul;179(14):4457-63. (PMID: 9226253)
Open Biol. 2017 Jan;7(1):. (PMID: 28100663)
Plant J. 2003 May;34(3):377-82. (PMID: 12713543)
Bot Stud. 2018 Oct 29;59(1):26. (PMID: 30374844)
G3 (Bethesda). 2017 May 5;7(5):1607-1615. (PMID: 28364038)
EMBO J. 1996 Apr 1;15(7):1687-95. (PMID: 8612593)
J Biol Chem. 2006 Dec 15;281(50):38314-21. (PMID: 17046824)
Plant Cell. 2017 Dec;29(12):3085-3101. (PMID: 29133466)
PLoS Comput Biol. 2006 May;2(5):e57. (PMID: 16710451)
Plant Physiol. 2017 May;174(1):435-449. (PMID: 28336770)
G3 (Bethesda). 2018 Dec 10;8(12):3973-3979. (PMID: 30355764)
J Mol Biol. 1990 Oct 5;215(3):403-10. (PMID: 2231712)
J Bacteriol. 2002 Oct;184(20):5733-45. (PMID: 12270832)
Nucleic Acids Res. 2007;35(9):3100-8. (PMID: 17452365)
Nucleic Acids Res. 2013 Jan 7;41(1):474-86. (PMID: 23093605)
Nature. 2012 Mar 28;484(7395):538-41. (PMID: 22456704)
فهرسة مساهمة: Keywords: 16S rRNA; Cyanobacteria; RNA-Seq; Shine–Dalgarno; bacterial translation initiation; chloroplast
المشرفين على المادة: 0 (5' Untranslated Regions)
0 (Prokaryotic Initiation Factors)
تواريخ الأحداث: Date Created: 20191018 Date Completed: 20200323 Latest Revision: 20200323
رمز التحديث: 20231215
مُعرف محوري في PubMed: PMC6847405
DOI: 10.1093/gbe/evz227
PMID: 31621842
قاعدة البيانات: MEDLINE
الوصف
تدمد:1759-6653
DOI:10.1093/gbe/evz227