دورية أكاديمية

Genetic basis for the cooperative bioactivation of plant lignans by Eggerthella lenta and other human gut bacteria.

التفاصيل البيبلوغرافية
العنوان: Genetic basis for the cooperative bioactivation of plant lignans by Eggerthella lenta and other human gut bacteria.
المؤلفون: Bess EN; Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, USA.; Department of Chemistry, University of California, Irvine, Irvine, CA, USA.; Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, USA., Bisanz JE; Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, USA., Yarza F; Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, USA., Bustion A; Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, USA., Rich BE; Department of Chemistry, University of California, Irvine, Irvine, CA, USA., Li X; University of Hawaii Cancer Center, Honolulu, HI, USA., Kitamura S; Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA., Waligurski E; Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, USA., Ang QY; Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, USA., Alba DL; Diabetes Center, University of California San Francisco, San Francisco, CA, USA., Spanogiannopoulos P; Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, USA., Nayfach S; United States Department of Energy Joint Genome Institute, Walnut Creek, CA, USA., Koliwad SK; Diabetes Center, University of California San Francisco, San Francisco, CA, USA., Wolan DW; Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA., Franke AA; University of Hawaii Cancer Center, Honolulu, HI, USA., Turnbaugh PJ; Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, USA. peter.turnbaugh@ucsf.edu.; Chan Zuckerberg Biohub, San Francisco, CA, USA. peter.turnbaugh@ucsf.edu.
المصدر: Nature microbiology [Nat Microbiol] 2020 Jan; Vol. 5 (1), pp. 56-66. Date of Electronic Publication: 2019 Nov 04.
نوع المنشور: Journal Article; Research Support, N.I.H., Extramural; Research Support, Non-U.S. Gov't
اللغة: English
بيانات الدورية: Publisher: Nature Publishing Group Country of Publication: England NLM ID: 101674869 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 2058-5276 (Electronic) Linking ISSN: 20585276 NLM ISO Abbreviation: Nat Microbiol Subsets: MEDLINE
أسماء مطبوعة: Original Publication: [London] : Nature Publishing Group, [2016]-
مواضيع طبية MeSH: Gene Expression Profiling*, Actinobacteria/*genetics , Gastrointestinal Microbiome/*genetics , Lignans/*metabolism, Actinobacteria/classification ; Actinobacteria/metabolism ; Animals ; Bacterial Proteins/genetics ; Bacterial Proteins/metabolism ; Biotransformation ; Genome, Bacterial/genetics ; Humans ; Lignans/chemistry ; Metabolic Networks and Pathways/genetics ; Mice ; Microbial Consortia/genetics ; Phylogeny ; Species Specificity
مستخلص: Plant-derived lignans, consumed daily by most individuals, are thought to protect against cancer and other diseases 1 ; however, their bioactivity requires gut bacterial conversion to enterolignans 2 . Here, we dissect a four-species bacterial consortium sufficient for all five reactions in this pathway. A single enzyme (benzyl ether reductase, encoded by the gene ber) was sufficient for the first two biotransformations, variable between strains of Eggerthella lenta, critical for enterolignan production in gnotobiotic mice and unique to Coriobacteriia. Transcriptional profiling (RNA sequencing) independently identified ber and genomic loci upregulated by each of the remaining substrates. Despite their low abundance in gut microbiomes and restricted phylogenetic range, all of the identified genes were detectable in the distal gut microbiomes of most individuals living in northern California. Together, these results emphasize the importance of considering strain-level variations and bacterial co-occurrence to gain a mechanistic understanding of the bioactivation of plant secondary metabolites by the human gut microbiome.
References: Adlercreutz, H. Lignans and human health. Crit. Rev. Clin. Lab. Sci. 44, 483–525 (2007). (PMID: 1794349410.1080/10408360701612942)
Clavel, T., Doré, J. & Blaut, M. Bioavailability of lignans in human subjects. Nutr. Res. Rev. 19, 187–196 (2006). (PMID: 1907988510.1017/S0954422407249704)
Spanogiannopoulos, P., Bess, E. N., Carmody, R. N. & Turnbaugh, P. J. The microbial pharmacists within us: a metagenomic view of xenobiotic metabolism. Nat. Rev. Microbiol. 14, 273–287 (2016). (PMID: 26972811524313110.1038/nrmicro.2016.17)
Carmody, R. N. & Turnbaugh, P. J. Host–microbial interactions in the metabolism of therapeutic and diet-derived xenobiotics. J. Clin. Invest. 124, 4173–4181 (2014). (PMID: 25105361419104110.1172/JCI72335)
Koppel, N., Maini Rekdal, V. & Balskus, E. P. Chemical transformation of xenobiotics by the human gut microbiota. Science 356, eaag2770 (2017). (PMID: 2864238110.1126/science.aag2770)
Valsta, L. M. et al. Phyto-oestrogen database of foods and average intake in Finland. Br. J. Nutr. 89, S31–S38 (2011). (PMID: 10.1079/BJN2002794)
Woting, A., Clavel, T., Loh, G. & Blaut, M. Bacterial transformation of dietary lignans in gnotobiotic rats. FEMS Microbiol. Ecol. 72, 507–514 (2010). (PMID: 2037082610.1111/j.1574-6941.2010.00863.x)
Clavel, T. & Mapesa, J. O. in Natural Products: Phytochemistry, Botany and Metabolism of Alkaloids, Phenolics and Terpenes (eds Ramawat, K. G. & Mérillon, J.-M.) 2433–2463 (Springer, 2013).
Olsen, A. et al. Plasma enterolactone and breast cancer incidence by estrogen receptor status. Cancer Epidemiol. Biomarkers Prev. 13, 2084–2089 (2004). (PMID: 15598765)
Sonestedt, E. et al. Enterolactone is differently associated with estrogen receptor β-negative and -positive breast cancer in a Swedish nested case-control study. Cancer Epidemiol. Biomarkers Prev. 17, 3241–3251 (2008). (PMID: 1899076710.1158/1055-9965.EPI-08-0393)
Seibold, P. et al. Enterolactone concentrations and prognosis after postmenopausal breast cancer: assessment of effect modification and meta-analysis. Int. J. Cancer 135, 923–933 (2014). (PMID: 2443615510.1002/ijc.28729)
Mabrok, H. B. et al. Lignan transformation by gut bacteria lowers tumor burden in a gnotobiotic rat model of breast cancer. Carcinogenesis 33, 203–208 (2012). (PMID: 2208057310.1093/carcin/bgr256)
Saarinen, N. M. et al. Enterolactone inhibits the growth of 7,12-dimethylbenz(a) anthracene-induced mammary carcinomas in the rat. Mol. Cancer Ther. 1, 869–876 (2002). (PMID: 12492120)
Zaineddin, A. K. et al. Serum enterolactone and postmenopausal breast cancer risk by estrogen, progesterone and herceptin 2 receptor status. Int. J. Cancer 130, 1401–1410 (2012). (PMID: 2154480410.1002/ijc.26157)
Stitch, S. R. et al. Excretion, isolation and structure of a new phenolic constituent of female urine. Nature 287, 738–740 (1980). (PMID: 743249010.1038/287738a0)
Setchell, K. D. R. et al. Lignans in man and in animal species. Nature 287, 740–742 (1980). (PMID: 625381210.1038/287740a0)
Clavel, T. et al. Intestinal bacterial communities that produce active estrogen-like compounds enterodiol and enterolactone in humans. Appl. Environ. Microbiol. 71, 6077–6085 (2005). (PMID: 16204524126596510.1128/AEM.71.10.6077-6085.2005)
Clavel, T., Borrmann, D., Braune, A., Doré, J. & Blaut, M. Occurrence and activity of human intestinal bacteria involved in the conversion of dietary lignans. Anaerobe 12, 140–147 (2006). (PMID: 1676586010.1016/j.anaerobe.2005.11.002)
Wang, L.-Q., Meselhy, M. R., Li, Y., Qin, G.-W. & Hattori, M. Human intestinal bacteria capable of transforming secoisolariciresinol diglucoside to mammalian lignans, enterodiol and enterolactone. Chem. Pharm. Bull. 48, 1606–1610 (2000). (PMID: 10.1248/cpb.48.1606)
Clavel, T., Henderson, G., Engst, W., Doré, J. & Blaut, M. Phylogeny of human intestinal bacteria that activate the dietary lignan secoisolariciresinol diglucoside. FEMS Microbiol. Ecol. 55, 471–478 (2006). (PMID: 1646638610.1111/j.1574-6941.2005.00057.x)
Bisanz, J. E. et al. Illuminating the microbiome’s dark matter: a functional genomic toolkit for the study of human gut Actinobacteria. Preprint at https://www.biorxiv.org/content/10.1101/304840v1 (2018).
Haiser, H. J. et al. Predicting and manipulating cardiac drug inactivation by the human gut bacterium Eggerthella lenta. Science 341, 295–298 (2013). (PMID: 23869020373635510.1126/science.1235872)
Koppel, N., Bisanz, J. E., Pandelia, M.-E., Turnbaugh, P. J. & Balskus, E. P. Discovery and characterization of a prevalent human gut bacterial enzyme sufficient for the inactivation of a family of plant toxins. eLife 7, e33953 (2018). (PMID: 29761785595354010.7554/eLife.33953)
Maini Rekdal, V., Bess, E. N., Bisanz, J. E., Turnbaugh, P. J. & Balskus, E. P. Discovery and inhibition of an interspecies gut bacterial pathway for levodopa metabolism. Science 364, eaau6323 (2019). (PMID: 3119698410.1126/science.aau6323)
Davis, R. M., Muller, R. Y. & Haynes, K. A. Can the natural diversity of quorum-sensing advance synthetic biology? Front. Bioeng. Biotechnol. 3, 30 (2015). (PMID: 258063684354409)
Rohman, A., van Oosterwijk, N., Thunnissen, A.-M. W. H. & Dijkstra, B. W. Crystal structure and site-directed mutagenesis of 3-ketosteroid Δ1-dehydrogenase from Rhodococcus erythropolis SQ1 explain its catalytic mechanism. J. Biol. Chem. 288, 35559–35568 (2013). (PMID: 24165124385330110.1074/jbc.M113.522771)
Fukuhara, Y. et al. Discovery of pinoresinol reductase genes in sphingomonads. Enzyme Microb. Technol. 52, 38–43 (2013). (PMID: 2319973710.1016/j.enzmictec.2012.10.004)
Maier, L. et al. Extensive impact of non-antibiotic drugs on human gut bacteria. Nature 555, 623–628 (2018). (PMID: 29555994610842010.1038/nature25979)
Milder, I. E. J. et al. Intake of the plant lignans secoisolariciresinol, matairesinol, lariciresinol, and pinoresinol in Dutch men and women. J. Nutr. 135, 1202–1207 (2005). (PMID: 1586730410.1093/jn/135.5.1202)
Matthews, R. G. Cobalamin- and corrinoid-dependent enzymes. Met. Ions Life Sci. 6, 53–114 (2009). (PMID: 20877792312010110.1039/9781847559333-00053)
Hille, R. The molybdenum oxotransferases and related enzymes. Dalton Trans. J. Inorg. Chem. 42, 3029–3042 (2013). (PMID: 10.1039/c2dt32376a)
Nayfach, S., Fischbach, M. A. & Pollard, K. S. MetaQuery: a web server for rapid annotation and quantitative analysis of specific genes in the human gut microbiome. Bioinformatics 31, 3368–3370 (2015). (PMID: 26104745459590310.1093/bioinformatics/btv382)
Nayfach, S., Shi, Z. J., Seshadri, R., Pollard, K. S. & Kyrpides, N. C. New insights from uncultivated genomes of the global human gut microbiome. Nature 568, 505–510 (2019). (PMID: 30867587678487110.1038/s41586-019-1058-x)
Alba, D. L. et al. Subcutaneous fat fibrosis links obesity to insulin resistance in Chinese-Americans. J. Clin. Endocrinol. Metab. 103, 3194–3204 (2018). (PMID: 29846621612689110.1210/jc.2017-02301)
Anders, S. & Huber, W. Differential expression analysis for sequence count data. Genome Biol. 11, R106 (2010). (PMID: 20979621321866210.1186/gb-2010-11-10-r106)
Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012). (PMID: 22388286332238110.1038/nmeth.1923)
Anders, S., Pyl, P. T. & Huber, W. HTSeq—a Python framework to work with high-throughput sequencing data. Bioinformatics 31, 166–169 (2015). (PMID: 2526070010.1093/bioinformatics/btu638)
Tang, H. & Mayersohn, M. Porcine prediction of pharmacokinetic parameters in people: a pig in a poke? Drug Metab. Dispos. 46, 1712–1724 (2018). (PMID: 3017116210.1124/dmd.118.083311)
Bolvig, A. K., Adlercreutz, H., Theil, P. K., Jørgensen, H. & Bach Knudsen, K. E. Absorption of plant lignans from cereals in an experimental pig model. Br. J. Nutr. 115, 1711–1720 (2016). (PMID: 2700134210.1017/S0007114516000829)
Gohl, D. M. et al. Systematic improvement of amplicon marker gene methods for increased accuracy in microbiome studies. Nat. Biotechnol. 34, 942–949 (2016). (PMID: 2745473910.1038/nbt.3601)
Callahan, B. J. et al. DADA2: high-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583 (2016). (PMID: 27214047492737710.1038/nmeth.3869)
Franke, A. A. et al. Liquid chromatographic–photodiode array mass spectrometric analysis of dietary phytoestrogens from human urine and blood. J. Chromatogr. B 777, 45–59 (2002). (PMID: 10.1016/S1570-0232(02)00216-7)
Franke, A. A., Halm, B. M., Kakazu, K., Li, X. & Custer, L. J. Phytoestrogenic isoflavonoids in epidemiologic and clinical research. Drug Test. Anal. 1, 14–21 (2009). (PMID: 20355154443924710.1002/dta.12)
Begum, A. N. et al. Dietary lignins are precursors of mammalian lignans in rats. J. Nutr. 134, 120–127 (2004). (PMID: 1470430310.1093/jn/134.1.120)
Yu, G., Smith, D. K., Zhu, H., Guan, Y. & Lam, T. T.-Y. ggtree: an R package for visualization and annotation of phylogenetic trees with their covariates and other associated data. Methods Ecol. Evol. 8, 28–36 (2017). (PMID: 10.1111/2041-210X.12628)
معلومات مُعتمدة: R21 CA227232 United States CA NCI NIH HHS; M01 RR001271 United States RR NCRR NIH HHS; P30 DK098722 United States DK NIDDK NIH HHS; R01 HL122593 United States HL NHLBI NIH HHS; P30 CA071789 United States CA NCI NIH HHS
المشرفين على المادة: 0 (Bacterial Proteins)
0 (Lignans)
SCR Organism: Eggerthella lenta
تواريخ الأحداث: Date Created: 20191106 Date Completed: 20200717 Latest Revision: 20220420
رمز التحديث: 20240628
مُعرف محوري في PubMed: PMC6941677
DOI: 10.1038/s41564-019-0596-1
PMID: 31686027
قاعدة البيانات: MEDLINE
الوصف
تدمد:2058-5276
DOI:10.1038/s41564-019-0596-1