دورية أكاديمية

SGLT1 inhibition boon or bane for diabetes-associated cardiomyopathy.

التفاصيل البيبلوغرافية
العنوان: SGLT1 inhibition boon or bane for diabetes-associated cardiomyopathy.
المؤلفون: Kalra J; Department of Pharmacy, Birla Institute of Technology and Sciences (BITS) Pilani, Hyderabad Campus, Jawahar Nagar, Shameerpet, Hyderabad,, Andhra Pradesh, 500078, India., Mangali SB; Department of Pharmacy, Birla Institute of Technology and Sciences (BITS) Pilani, Hyderabad Campus, Jawahar Nagar, Shameerpet, Hyderabad,, Andhra Pradesh, 500078, India., Dasari D; Department of Pharmacy, Birla Institute of Technology and Sciences (BITS) Pilani, Hyderabad Campus, Jawahar Nagar, Shameerpet, Hyderabad,, Andhra Pradesh, 500078, India., Bhat A; Centre for Molecular Biology, Central University of Jammu, Jammu, 181143, India., Goyal S; Department of Pharmacy, Birla Institute of Technology and Sciences (BITS) Pilani, Hyderabad Campus, Jawahar Nagar, Shameerpet, Hyderabad,, Andhra Pradesh, 500078, India., Dhar I; Department of Clinical Science, University of Bergen, Bergen, 5009, Norway., Sriram D; Department of Pharmacy, Birla Institute of Technology and Sciences (BITS) Pilani, Hyderabad Campus, Jawahar Nagar, Shameerpet, Hyderabad,, Andhra Pradesh, 500078, India., Dhar A; Department of Pharmacy, Birla Institute of Technology and Sciences (BITS) Pilani, Hyderabad Campus, Jawahar Nagar, Shameerpet, Hyderabad,, Andhra Pradesh, 500078, India.
المصدر: Fundamental & clinical pharmacology [Fundam Clin Pharmacol] 2020 Apr; Vol. 34 (2), pp. 173-188. Date of Electronic Publication: 2019 Nov 19.
نوع المنشور: Journal Article; Review
اللغة: English
بيانات الدورية: Publisher: Blackwell Science Country of Publication: England NLM ID: 8710411 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1472-8206 (Electronic) Linking ISSN: 07673981 NLM ISO Abbreviation: Fundam Clin Pharmacol Subsets: MEDLINE
أسماء مطبوعة: Publication: <2001->: Oxford : Blackwell Science
Original Publication: Paris ; New York : Elsevier, c1987-
مواضيع طبية MeSH: Diabetic Cardiomyopathies/*drug therapy , Hypoglycemic Agents/*pharmacology , Sodium-Glucose Transporter 1/*antagonists & inhibitors, Animals ; Blood Glucose/drug effects ; Diabetes Mellitus/drug therapy ; Diabetes Mellitus/physiopathology ; Diabetic Cardiomyopathies/physiopathology ; Humans ; Hyperglycemia/complications ; Hyperglycemia/drug therapy
مستخلص: Chronic hyperglycaemia is a peculiar feature of diabetes mellitus (DM). Sequential metabolic abnormalities accompanying glucotoxicity are some of its implications. Glucotoxicity most likely corresponds to the vascular intricacy and metabolic alterations, such as increased oxidation of free fatty acids and reduced glucose oxidation. More than half of those with diabetes also develop cardiac abnormalities due to unknown causes, posing a major threat to the currently available marketed preparations which are being used for treating these cardiac complications. Even though impairment in cardiac functioning is the principal cause of death in individuals with type 2 diabetes (T2D), reducing plasma glucose levels has little effect on cardiovascular disease (CVD) risk. In vitro and in vivo studies have demonstrated that inhibitors of sodium glucose transporter (SGLT) represent a putative therapeutic intervention for these pathological conditions. Several clinical trials have reported the efficacy of SGLT inhibitors as a novel and potent antidiabetic agent which along with its antihyperglycaemic activity possesses the potential of effectively treating its associated cardiac abnormalities. Thus, hereby, the present review highlights the role of SGLT inhibitors as a successful drug candidate for correcting the shifts in deregulation of cardiac energy substrate metabolism together with its role in treating diabetes-related cardiac perturbations.
(© 2019 Société Française de Pharmacologie et de Thérapeutique.)
References: Ueta K., O'Brien T.P., McCoy G.A. et al. Glucotoxicity targets hepatic glucokinase in Zucker diabetic fatty rats, a model of type 2 diabetes associated with obesity. Am. J. Physiol. - Endocrinol. Metab. (2014) 306 1225-1239.
Duckworth W., Abraira C., Moritz T. et al. Glucose control and vascular complications in veterans with type 2 diabetes. N. Engl. J. Med. (2009) 360 129-139.
Ogurtsova K., da Rocha Fernandes J.D., Huang Y. et al. IDF Diabetes Atlas: Global estimates for the prevalence of diabetes for 2015 and 2040. Diabetes Res. Clin. Pract [Internet]. (2017) 128 40-50.
Stratton I.M., Cull C.A., Manley S.E., Frighi V., UK .prospective diabetes study (UKPDS) - VIII. Study design, progress and performance. Diabetologia (1991) 34 877-890.
The Diabetes Control and Complications Trial Research Group. (2005).
Han T.S., Lean M.E. A clinical perspective of obesity, metabolic syndrome and cardiovascular disease. JRSM. Cardiovasc. Dis. (2016) 5 204800401663337.
Kalra J., Dhar A. Double-stranded RNA-dependent protein kinase signalling and paradigms of cardiometabolic syndrome. Fundam. Clin. Pharmacol. (2017) 31 265-279.
Tahrani A.A., Bailey C.J., Del Prato S., Barnett A.H. Management of type 2 diabetes: New and future developments in treatment. Lancet (2011) 378 182-197.
Ferrannini E., Muscelli E., Frascerra S. et al. Metabolic response to sodium-glucose cotransporter 2 inhibition in type 2 diabetic patients. J. Clin. Invest. (2014) 124 499-508.
Ferrannini E., Baldi S., Frascerra S. et al. Renal handling of ketones in response to sodium-glucose cotransporter 2 inhibition in patients with type 2 diabetes. Diabetes Care (2017) 40 771-776.
Zinman B., Wanner C., Lachin J.M. et al. Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. N Engl J Med [Internet]. (2015) 373 2117-2128. Available from http://www.nejm.org/doi/10.1056/NEJMoa1504720.
Joubert M., Jagu B., Montaigne D. et al. The sodium-glucose cotransporter 2 inhibitor dapagliflozin prevents cardiomyopathy in a diabetic lipodystrophic mouse model. Diabetes (2017) 66 1030-1040.
Balteau M., Steenbergen A., Van Timmermans A.D. et al. AMPK activation by glucagon-like peptide-1 prevents NADPH oxidase activation induced by hyperglycemia in adult cardiomyocytes. Am. J. Physiol. Hear Circ. Physiol. (2014) 307 H1120-1133.
Li Y., Li Y., Feng Q., Arnold M., Peng T. Calpain activation contributes to hyperglycaemia-induced apoptosis in cardiomyocytes. Cardiovasc. Res. (2009) 84 100-110.
Novikov A., Vallon V., Diego S. SGLT2 inhibition in the diabetic kidney: an update HHS Public Access. Curr. Opin. Nephrol. Hypertens. (2016) 25 50-58.
Banerjee S.K., McGaffin K.R., Pastor-Soler N.M., Ahmad F. SGLT1 is a novel cardiac glucose transporter that is perturbed in disease states. Cardiovasc. Res. (2009) 84 111-118.
Shoji T., Yamada M., Miura T. et al. Chronic administration of apple polyphenols ameliorates hyperglycaemia in high-normal and borderline subjects: A randomised, placebo-controlled trial. Diabetes Res. Clin. Pract. (2017) 129 43-51.
Aneja A., Tang W.H.W., Bansilal S., Garcia M.J., Farkouh M.E. Diabetic cardiomyopathy: insights into pathogenesis, diagnostic challenges, and therapeutic options. Am. J. Med. (2008) 121 748-757.
Palmieri V., Tracy R.P., Roman M.J. et al. Relation of left ventricular hypertrophy to inflammation and albuminuria in adults with type 2 diabetes: The strong heart study. Diabetes Care (2003) 26 2764-2769.
Stefano G.B., Challenger S., Kream R.M. Hyperglycemia-associated alterations in cellular signaling and dysregulated mitochondrial bioenergetics in human metabolic disorders. Eur. J. Nutr. (2016) 55 2339-2345.
Hunt J.V., Dean R.T., Wolff S.P. Hydroxyl radical production. Biochem. J. (1988) 256 205-212.
Suzuki S., Hinokio Y., Komatu K. et al. Oxidative damage to mitochondrial DNA and its relationship to diabetic complications. Diabetes Res. Clin. Pract. 1999 Suzuki-1.pdf>. (1999) 45 161-168.
Tesfamariam B. Selective impairment of endothelium-dependent relaxations by prostaglandin endoperoxide. J. Hypertens. (1994) 12 41-7.
Giugliano D., Ceriello A., Paolisso G. Oxidative stress and diabetic vascular complications. Diabetes Care (1996) 19 257-267.
Lum H., Roebuck K.A. Oxidant stress and endothelial cell dysfunction. Am. J. Physiol. Cell. Physiol. (2001) 280 C719-741.
Russell N.D.F., Cooper M.E. 50 years forward: mechanisms of hyperglycaemia-driven diabetic complications. Diabetologia (2015) 58 1708-1714.
Ferrannini E., Solini A. SGLT2 inhibition in diabetes mellitus: rationale and clinical prospects. Nat. Rev. Endocrinol. [Internet]. (2012) 8(8) 495-502.
Belke D.D., Betuing S., Tuttle M.J. et al. Insulin signaling coordinately regulates cardiac size, metabolism, and contractile protein isoform expression. J. Clin. Invest. (2002) 109 629-639.
Russell R.R. III, Yin R., Caplan M.J. et al. Additive effects of hyperinsulinemia and ischemia on myocardial GLUT1 and GLUT4 translocation in vivo. Circulation (1998) 98 2180-2186.
Lee Y.C., Huang H.Y., Chang C.J., Cheng C.H., Chen Y.T. Mitochondrial GLUT10 facilitates dehydroascorbic acid import and protects cells against oxidative stress: Mechanistic insight into arterial tortuosity syndrome. Hum. Mol. Genet. (2010) 19 3721-3733.
Yoshikawa T., Inoue R., Matsumoto M., Yajima T., Ushida K., Iwanaga T. Comparative expression of hexose transporters (SGLT1, GLUT1, GLUT2 and GLUT5) throughout the mouse gastrointestinal tract. Histochem. Cell. Biol. (2011) 135 183-194.
Thorens B., Guillam M.T., Beermann F., Burcelin R., Jaquet M. Transgenic reexpression of GLUT1 or GLUT2 in pancreatic β cells rescues GLUT2-null mice from early death and restores normal glucose-stimulated insulin secretion. J. Biol. Chem. (2000) 275 23751-23758.
Hediger M.A., Turk E., Wright E.M. Homology of the human intestinal Na+/glucose and Escherichia coli Na+/proline cotransporters. Proc. Natl Acad. Sci. U S A. (1989) 86 5748-5752.
Hirsch J.R., Loo D.D.F., Wright E.M. Regulation of Na+/glucose cotransporter expression by protein kinases in Xenopus laevis oocytes. J. Biol. Chem. (1996) 271 14740-14746.
Hediger M.A., Coady M.J., Ikeda T.S., Wright E.M. Expression cloning and cDNA sequencing of the Na+/glucose co-transporter. Nature (1987) 330 379-81.
Turk E., Wright E.M. Membrane topology motifs in the SGLT cotransporter family. J. Membr. Biol. (1997) 159 1-20.
Faham S., Watanabe A., Besserer G.M. et al. The crystal structure of a sodium galactose transporter reveals mechanistic insights into Na+/sugar symport. Science (2008) 321 810-814.
Tyagi N.K., Kumar A., Goyal P., Pandey D., Siess W., Kinne R.K.H. D-glucose-recognition and phlorizin-binding sites in human sodium/D-glucose cotransporter 1 (hSGLT1): A tryptophan scanning study. Biochemistry (2007) 46 13616-13628.
Hummel C.S., Lu C., Loo D.D.F., Hirayama B.A., Voss A.A., Wright E.M. Glucose transport by human renal Na+/D-glucose cotransporters SGLT1 and SGLT2. Am. J. Physiol. Cell Physiol. (2011) 300 14-21.
Zhang M., Ay L.K., Anilkumar N. et al. Glycated proteins stimulate reactive oxygen species production in cardiac myocytes: Involvement of Nox2 (gp91phox)-containing NADPH oxidase. Circulation (2006) 113 1235-1243.
Gorboulev V., Schürmann A., Vallon V. et al. Na + -D-glucose cotransporter SGLT1 is pivotal for intestinal glucose absorption and glucose-dependent incretin secretion. Diabetes (2012) 61 187-196.
Wright E.M., Loo D.D.F.L., Hirayama B.A. Biology of human sodium glucose transporters. Physiol. Rev. (2011) 91 733-794.
Vrhovac I., Eror D.B., Klessen D. et al. Localizations of Na+-D-glucose cotransporters SGLT1 and SGLT2 in human kidney and of SGLT1 in human small intestine, liver, lung, and heart. Pflugers Arch. Eur. J. Physiol. (2015) 467 1881-1898.
Calado J., Sznajer Y., Metzger D. et al. Twenty-one additional cases of familial renal glucosuria: Absence of genetic heterogeneity, high prevalence of private mutations and further evidence of volume depletion. Nephrol. Dial Transplant. (2008) 23 3874-3879.
Bonner C., Kerr-Conte J., Gmyr V. et al. glucose cotransporters SGLT1 and SGLT2 in human kidney and of SGLT1 in human small intestine, liver, lung, and heart. Nat. Med. (2015) 21 512-517.
Chen J., Williams S., Ho S. et al. Quantitative PCR tissue expression profiling of the human SGLT2 gene and related family members. Diabetes Ther. (2010) 1 57-92.
Poppe R., Karbach U., Gambaryan S., Wiesinger H., Witte O.W., Koepsell H. Expression of the Na ~ - D-Glucose Cotransporter SGLT1 in Neurons. J. Neurochem. (1997) 69 84-94.
Zhou L., Cryan E.V., D'Andrea M.R., Belkowski S., Conway B.R., Demarest K.T. Human cardiomyocytes express high level of Na + /glucose cotransporter 1 (SGLT1). J. Cell. Biochem. (2003) 90 339-346.
Balteau M., Tajeddine N., De Meester C. et al. NADPH oxidase activation by hyperglycaemia in cardiomyocytes is independent of glucose metabolism but requires SGLT1. Cardiovasc. Res. (2011) 92 237-246.
Rubler S., Dlugash J., Yuceoglu Y.Z., Kumral T., Branwood A.W., Grishman A. New type of cardiomyopathy associated with diabetic glomerulosclerosis. Am. J. Cardiol. (1972) 30 595-602.
Udumula M.P., Medapi B., Dhar I. et al. The small molecule indirubin-3′-oxime inhibits protein kinase R: antiapoptotic and antioxidant effect in rat cardiac myocytes. Pharmacology (2016) 97 25-30.
Mellor K.M., Varma U., Stapleton D.I., Delbridge L.M.D. Cardiomyocyte glycophagy is regulated by insulin and exposure to high extracellular glucose. Am. J. Physiol. Hear Circ. Physiol. (2014) 306 1240-1245.
Hafstad A.D., Solevåg G.H., Severson D.L., Larsen T.S., AasumE. Perfused hearts from Type 2 diabetic (db/db) mice show metabolic responsiveness to insulin. Am. J. Physiol. Hear Circ. Physiol. (2006) 290 H1763-9.
Arad M., Woodrow Benson D., Perez-Atayde A.R. et al. Constitutively active AMP kinase mutations cause glycogen storage disease mimicking hypertrophic cardiomyopathy. J. Clin. Invest. (2002) 109 357-362.
Banerjee S.K., Wang D.W., Alzamora R. et al. SGLT1, a novel cardiac glucose transporter, mediates increased glucose uptake in PRKAG2 cardiomyopathy. J. Mol. Cell. Cardiol. (2010) 49 683-692.
Ehrenkranz J.R.L., Lewis N.G., Ronald Kahn C., Roth J. Phlorizin: a review. Diabetes Metab. Res. Rev. (2005) 21 31-38.
Vick H., Diedrich D.F., Baumann K. Re-evaluation of renal tubular glucose transport inhibition by phlorizin analogs. Am. J. Physiol. (1973) 224 552-557.
Rossetti L., Smith D., Shulman G.I., Papachristou D., DeFronzo R.A. Correction of hyperglycemia with phlorizin normalizes tissue sensitivity to insulin in diabetic rats. J. Clin. Invest. (1987) 79 1510-1515.
Dimitrakoudis D., Vranic M., Klip A. Effects of hyperglycemia on glucose transporters of the muscle: use of the renal glucose reabsorption inhibitor phlorizin to control glycemia. J. Am. Soc. Nephrol. (1992) 3 1078-1091.
Jonas J.C., Sharma A., Hasenkamp W. et al. Chronic hyperglycemia triggers loss of pancreatic β cell differentiation in an animal model of diabetes. J. Biol. Chem. (1999) 274 14112-14121.
Abdul-Ghani M.A., Defronzo R.A. Inhibition of renal glucose reabsorption: A novel strategy for achieving glucose control in type 2 diabetes mellitus. Endocr. Pract. (2008) 14 782-790.
Isaji M. SGLT2 inhibitors: molecular design and potential differences in effect. Kidney Int. Suppl. [Internet]. (2011) 79 S14-19.
Hardman T.C., Dubrey S.W. Development and potential role of type-2 sodium-glucose transporter inhibitors for management of type 2 diabetes. Diabetes Ther. (2011) 2 133-145.
http://guidelines.diabetes.ca/browse/chapter13&#95;2015 (accessed on 24.Feb. 18).
https://www.ema.europa.eu/en/medicines/human/referrals/sglt2-inhibitors-previously-canagliflozin (accessed on 24.Feb. 18).
Mudaliar S., Polidori D., Zambrowicz B., Henry R.R. Sodium-glucose cotransporter inhibitors: Effects on renal and intestinal glucose transport from bench to bedside. Diabetes Care (2015) 38 2344-2353.
Polidori D., Sha S., Mudaliar S. et al. Canagliflozin lowers postprandial glucose and insulin by delaying intestinal glucose absorption in addition to increasing urinary glucose excretion: Results of a randomized, placebo-controlled study. Diabetes Care (2013) 36 2154-2161.
Powell D.R., Doree D., Jeter-Jones S., Ding Z.M., Zambrowicz B., Sands A. Sotagliflozin improves glycemic control in nonobese diabetes-prone mice with type 1 diabetes. Diabetes Metab. Syndr. Obes. Targets Ther. (2015) 8 121-127.
Zambrowicz B., Freiman J., Brown P.M. et al. LX4211, a dual SGLT1/SGLT2 inhibitor, improved glycemic control in patients with type 2 diabetes in a Randomized, placebo-controlled trial. Clin. Pharmacol. Ther. (2012) 92 158-169.
Castaneda F., Burse A., Boland W., Kinne R.K.H. Thioglycosides as inhibitors of hSGLT1 and hSGLT2: Potential therapeutic agents for the control of hyperglycemia in diabetes. Int. J. Med. Sci. (2007) 4 131-139.
Dobbins R.L., Greenway F.L., Chen L. et al. Selective sodium-dependent glucose transporter 1 inhibitors block glucose absorption and impair glucose-dependent insulinotropic peptide release. Am. J. Physiol. Gastrointest Liver Physiol. (2015) 308 G946-954.
Fushimi N., Teranishi H., Shimizu K. et al. Design, synthesis, and structure-activity relationships of a series of 4-benzyl-5-isopropyl-1H-pyrazol-3-yl β-d-glycopyranosides substituted with novel hydrophilic groups as highly potent inhibitors of sodium glucose co-transporter 1 (SGLT1). Bioorganic Med. Chem. [Internet]. (2013) 21 748-765.
http://adisinsight.springer.com/drugs/800022295 (accessed on 20 March 2017).
Fukaya N., Mochizuki K., Tanaka Y. et al. The -glucosidase inhibitor miglitol delays the development of diabetes and dysfunctional insulin secretion in pancreatic -cells in OLETF rats. Eur. J. Pharmacol. (2009) 624 51-57.
Koyama M., Wada R., Mizukami H. et al. Inhibition of progressive reduction of islet β-cell mass in spontaneously diabetic Goto-Kakizaki rats by α-glucosidase inhibitor. Metabolism (2000) 49 347-352.
Shibazaki T., Tomae M., Ishikawa-Takemura Y. et al. KGA-2727, a novel selective inhibitor of a high-affinity sodium glucose cotransporter (SGLT1), exhibits antidiabetic efficacy in rodent models. J. Pharmacol. Exp. Ther. (2012) 342 288-296.
Abdul-Ghani M., Del Prato S., Chilton R., De Fronzo R.A. SGLT2 inhibitors and cardiovascular risk: Lessons learned from the EMPA-REG Outcome study. Diabetes Care (2016) 39 717-725.
Sattar N., McLaren J., Kristensen S.L., Preiss D., McMurray J.J. SGLT2 Inhibition and cardiovascular events: why did EMPA-REG Outcomes surprise and what were the likely mechanisms? Diabetologia [Internet]. (2016) 59(7) 1333-1339.
Mudaliar S., Alloju S., Henry R.R. Can a shift in fuel energetics explain the beneficial cardiorenal outcomes in the EMPA-REG OUTCOME study? a unifying hypothesis. Diabetes Care (2016) 39 1115-1122.
(http://www.acc.org/latest-in-cardiology/clinicaltrials/2017/06/12/16/25/canvas?w&#95;nav=CI; accessed on 8 July 2017).
Janssen Research & Development, LLC. CANagliflozin cardioVascular Assessment Study (CANVAS) study record detail: July 2, 2016.
https://clinicaltrials.gov/ct2/show/NCT01730534.
https://clinicaltrials.gov/ct2/show/NCT02653482.
https://clinicaltrials.gov/ct2/show/NCT03036124).
https://www.astrazeneca.com/media-centre/press-releases/2017/astrazeneca-s-cvd-real-study-shows-sglt-2-inhibitors-significant-reduced-death-and-hospitalisations-for-heart-failure-versus-other-type-2-diabetes-medicines-19032017.html.
Veyhl-Wichmann M., Friedrich A., Vernaleken A. et al. Phosphorylation of RS1 (RSC1A1) steers inhibition of different exocytotic pathways for glucose transporter SGLT1 and nucleoside transporter CNT1, and an rs1-derived peptide inhibits glucose absorption. Mol. Pharmacol. (2016) 89 118-132.
Palazzo M., Gariboldi S., Zanobbio L. et al. Sodium-dependent glucose transporter-1 as a novel immunological player in the intestinal mucosa. J. Immunol. (2008) 181 3126-3136.
Yu L.C.H., Flynn A.N., Turner J.R., Buret A.G. SGLT-1-mediated glucose uptake protects intestinal epithelial cells against LPS-induced apoptosis and barrier defects: A novel cellular rescue mechanism? FASEB J. (2005) 19 1822-1835.
Yu L.C.H., Turner J.R., Buret A.G. LPS/CD14 activation triggers SGLT-1-mediated glucose uptake and cell rescue in intestinal epithelial cells via early apoptotic signals upstream of caspase-3. Exp. Cell. Res. (2006) 312 3276-3286.
Cardani D., Sardi C., La Ferla B. et al. Sodium glucose cotransporter 1 ligand BLF501 as a novel tool for management of gastrointestinal mucositis. Mol. Cancer. (2014) 13 1-12.
Ferrannini E., Ramos S.J., Salsali A., Tang W., List J.F. Dapagliflozin monotherapy in type 2 diabetic patients with inadequate glycemic control by diet and exercise: A randomized, double-blind, placebo-controlled, phase 3 trial. Diabetes Care (2010) 33 2217-2224.
Nyirjesy P., Zhao Y., Ways K., Usiskin K. Evaluation of vulvovaginal symptoms and Candida colonization in women with type 2 diabetes mellitus treated with canagliflozin, a sodium glucose co-transporter 2 inhibitor. Curr. Med. Res. Opin. (2012) 28 1173-1178.
Rosenstock J., Aggarwal N., Polidori D. et al. Dose-ranging effects of canagliflozin, a sodium-glucose cotransporter 2 inhibitor, as add-on to metformin in subjects with type 2 diabetes. Diabetes Care (2012) 35 1232-1238.
Devineni D., Morrow L., Hompesch M. et al. Canagliflozin improves glycaemic control over 28 days in subjects with type 2 diabetes not optimally controlled on insulin. Diabetes. Obes. Metab. (2012) 14 539-545.
Stenlöf K., Cefalu W.T., Kim K.A. et al. Efficacy and safety of canagliflozin monotherapy in subjects with type 2 diabetes mellitus inadequately controlled with diet and exercise. Diabetes. Obes. Metab. (2013) 15 372-382.
Yale J.F., Bakris G., Cariou B. et al. Efficacy and safety of canagliflozin in subjects with type 2 diabetes and chronic kidney disease. Diabetes. Obes. Metab. (2013) 15 463-473.
Rosenstock J., Seman L.J., Jelaska A. et al. Efficacy and safety of empagliflozin, a sodium glucose cotransporter 2 (SGLT2) inhibitor, as add-on to metformin in type 2 diabetes with mild hyperglycemia. Diabetes Obes. Metab. (2013) 15 1154-1160.
Ferrannini E., Berk A., Hantel S. et al. Long-term safety and efficacy of empagliflozin, sitagliptin, and metformin: An active-controlled, parallel-group, randomized, 78-week open-label extension study in patients with type 2 diabetes. Diabetes Care (2013) 36 4015-4021.
Nauck M.A., Del Prato S., Meier J.J. et al. Dapagliflozin Versus Glipizide as Add-on Therapy in Patients With Type 2 Diabetes Who Have Inadequate Glycemic Control With Metformin: A randomized, 52-week, double-blind, active-controlled noninferiority trial. Diabetes Care (2011) 34 2015-2022.
Nyirjesy P., Sobel J.D. Genital mycotic infections in patients with diabetes. Postgrad. Med. (2013) 125 33-46.
Nyirjesy P., Sobel J.D., Fung A. et al. Genital mycotic infections with canagliflozin, a sodium glucose co-transporter 2 inhibitor, in patients with type 2 diabetes mellitus: A pooled analysis of clinical studies. Curr. Med. Res. Opin. (2014) 30 1109-1119.
Vasilakou D., Karagiannis T., Athanasiadou E. et al. Sodium-glucose cotransporter 2 inhibitors for type 2 diabetes: a systematic review and meta-analysis. Ann. Intern. Med. (2013) 159 262-274.
Polidori D., Mari A., Ferrannini E. Canagliflozin, a sodium glucose co-transporter 2 inhibitor, improves model-based indices of beta cell function in patients with type 2 diabetes. Diabetologia (2014) 57 891-901.
Cefalu W.T., Leiter L.A., Yoon K.H. et al. Efficacy and safety of canagliflozin versus glimepiride in patients with type 2 diabetes inadequately controlled with metformin (CANTATA-SU): 52 week results from a randomised, double-blind, phase 3 non-inferiority trial. Lancet (2013) 382 941-950.
Niskanen L., Cefalu W., Leiter L. et al. Efficacy and safety of canagliflozin, a sodium glucose co-transporter 2 inhibitor, compared with glimepiride in patients with type 2 diabetes on background metformin; Presented at 48th EASD Annual Meeting; October 1-5, 2012; Berlin, Germany.
Wilding J.p h, Charpentier G., Hollander P. et al. Efficacy and safety of canagliflozin in patients with type 2 diabetes mellitus inadequately controlled with metformin and sulphonylurea: a randomised trial. Int. J. Clin. Pract. (2013) 67 1267-1282.
Schernthaner G., Gross J.L., Rosenstock J. et al. Canagliflozin compared with sitagliptin for patients with type 2 diabetes who do not have adequate glycemic control with metformin plus sulfonylurea: A 52-week randomized trial. Diabetes Care (2013) 36 2508-2515.
Forst T., Guthrie R., Goldenberg R. et al. Efficacy and safety of canagliflozin over 52 weeks in patients with type 2 diabetes on background metformin and pioglitazone. Diabetes. Obes. Metab. (2014) 16 467-477.
Neal B., Perkovic V., de Zeeuw D., Mahaffey K.W., Fulcher G., Ways K. et al, CANVAS Trial Collaborative Group. Efficacy and safety of canagliflozin, an inhibitor of sodium-glucose cotransporter 2, when used in conjunction with insulin therapy in patients with type 2 diabetes. Diabetes Care (2015) 38 403-411.
http://www.diabetesincontrol.com/sglt2-inhibitors-and-risk-of-uti-development-in-patients-with-diabetes/).
Usiskin K., Kline I., Fung A., Mayer C., Meininger G. Safety and tolerability of canagliflozin in patients with type 2 diabetes mellitus: Pooled analysis of phase 3 study results. Postgrad. Med. (2014) 126 16-34.
Bailey C.J., Iqbal N., T'joen C. et al. Dapagliflozin monotherapy in drug-naïve patients with diabetes: a randomized-controlled trial of low-dose range. Diabetes Obes. Metab. (2012) 14(10) 951-959.
Van Lierop A.H., Hamdy N.A.T., Van Der Meer R.W. et al. Distinct effects of pioglitazone and metformin on circulating sclerostin and biochemical markers of bone turnover in men with type 2 diabetes mellitus. Eur. J. Endocrinol. (2012) 166 711-716.
Rosenstock J., Vico M., Wei L., Salsali A., List J.F. Effects of dapagliflozin, an SGLT2 inhibitor, on HbA 1c, body weight, and hypoglycemia risk in patients with type 2 diabetes inadequately controlled on pioglitazone monotherapy. Diabetes Care (2012) 35 1473-1478.
Bode B., Stenlof K., Sullivan D. et al. Efficacy and safety of canagliflozin (CANA), a sodium glucose co-transporter 2 inhibitor (SGLT2), in older subjects with type 2 diabetes mellitus; Presented at 48th EASD Annual Meeting; October 1-5, 2012; Berlin, Germany.
(ClinicalTrials.gov identifier: NCT01106651).
European Medicines Agency [homepage on the Internet] Forxiga (Dapagliflozin). EMA Assessment Report. Procedure no. EMEA/H/C/002322. 2012. [Accessed September 17, 2013].
Ljunggren Ö., Bolinder J., Johansson L. et al. Dapagliflozin has no effect on markers of bone formation and resorption or bone mineral density in patients with inadequately controlled type 2 diabetes mellitus on metformin. Diabetes Obes. Metab. (2012) 14 990-999.
US Food and Drug Administration. FDA background document, BMS-512148.NDA202293dapagliflozin.2013. http://www.fda.gov/downloads/drugs/endocrinologicandmetabolicdrugsadvisorycommittee/ucm378079.pdf.
Wanner C., Toto R.D., Gerich J. et al. No increase in bone fractures with empagliflozin (EMPA) in a pooled analysis of more than 11,000 patients with type 2 diabetes (T2DM). J. Am. Soc. Nephrol. (2013) 24(Suppl) Abstract TH-PO452.
Scafoglio C., Hirayama B.A., Kepe V. et al. Functional expression of sodium-glucose transporters in cancer. Proc. Natl Acad. Sci. U. S. A. (2015) 112 E4111-4119.
Ptaszynska A., Johnsson K.M., Parikh S.J., de Bruin T.W.A., Apanovitch A.M., List J.F. Safety profile of dapagliflozin for type 2 diabetes: pooled analysis of clinical studies for overall safety and rare events. Drug Saf. (2014) 37 815-829.
Nicolle L.E., Capuano G., Ways K., Usiskin K. Effect of canagliflozin, a sodium glucose co-transporter 2 (SGLT2) inhibitor, on bacteriuria and urinary tract infection in subjects with type 2 diabetes enrolled in a 12-week, phase 2 study. Curr. Med. Res. Opin. (2012) 28 1167-1171.
List J.F., Ley S., Ptaszynska A. et al. Characterization of genital infections in the setting of pharmacologically-induced glucosuria. In: American Diabetes Association (ADA) 71st scientific sessions. (2011).
Kashiwagi Y., Nagoshi T., Yoshino T., et al. Expression of SGLT1 in human hearts and impairment of cardiac glucose uptake by phlorizin during ischemia-reperfusion injury in mice. PLoS ONE (2015) 10 e0130605.
Dominguez J.H., Camp K., Maianu L., Feister H., Garvey W.T. Molecular adaptations of GLUT1 and GLUT2 in renal proximal tubules of diabetic rats. Am. J. Physiol. (1994) 266(2 Pt 2) F283-90.
Kim H.R., Park S.W., Cho H.J. et al. Comparative gene expression profiles of intestinal transporters in mice, rats and humans. Pharmacol. Res. (2007) 56 224-236.
Balen D., Ljubojevic M., Breljak D. et al. Revised immunolocalization of the Na+-D-glucose cotransporter SGLT1 in rat organs with an improved antibody. Am. J. Physiol. Cell. Physiol. (2008) 295 C475-489.
Fan X., Chan O., Ding Y., Zhu W., Mastaitis J., Sherwin R. Reduction in SGLT1 mRNA expression in the ventromedial hypothalamus improves the counter regulatory responses to hypoglycemia in recurrently hypoglycemic and diabetic rats. Diabetes (2015) 64 3564-3572.
Elfeber K., Stümpel F., Gorboulev V. et al. Na(+)-D-glucose cotransporter in muscle capillaries increases glucose permeability. Biochem. Biophys. Res. Commun. (2004) 314 301-305.
Sabino-Silva R., Freitas H.s, Lamers M.l., et al. Na -glucose cotransporter SGLT1 protein in salivary glands: potential involvement in the diabetes-induced decrease in salivary flow. J. Membr. Biol. (2009) 228 63-69.
Oku A., Ueta K., Arakawa K. et al. T-1095, an inhibitor of renal Na+-glucose cotransporters, may provide a novel approach to treating diabetes. Diabetes (1999) 48 1794-1800.
Katsuno K., Fujimori Y., Takemura Y. et al. Sergliflozin, a novel selective inhibitor of low-affinity sodium glucose cotransporter (SGLT2), validates the critical role of SGLT2 in renal glucose reabsorption and modulates plasma glucose level. J. Pharmacol. Exp. Ther. (2007) 320 323-330.
Fujimori Y., Katsuno K., Nakashima I., Ishikawa-Takemura Y., Fujikura H., Isaji M. Remogliflozin etabonate, in a novel category of selective low-affinity sodium glucose cotransporter (SGLT2) inhibitors, exhibits antidiabetic efficacy in rodent models. J. Pharmacol. Exp. Ther. (2008) 327 268-276.
Derdau V., Fey T., Atzrodt J. Synthesis of isotopically labelled SGLT inhibitors and their metabolites. Tetrahedron (2010) 66 1472-1482.
http://www.diabetes.co.uk/diabetes-medication/forxiga-dapagliflozin.html.
https://www.ahcmedia.com.
Nomura S., Sakamaki S., Hongu M. et al. Discovery of canagliflozin, a novel C-glucoside with thiophene ring, as sodium-dependent glucose co transporter 2 inhibitor for the treatment of type 2 diabetes mellitus. J. Med. Chem. (2010) 53 6355-6360.
Komala M.G., Gross S., Mudaliar H. et al. Inhibition of kidney proximal tubular glucose reabsorption does not prevent against diabetic nephropathy in type 1 diabetic eNOS knockout mice. PLoS ONE. (2014) 9 e108994.
Mudaliar S., Polidori D., Zambrowicz B., Henry R.R. Sodium-glucose cotransporter inhibitors: Effects on renal and intestinal glucose transport: From bench to bedside. Diabetes Care (2015) 38 2344-2353.
http://adisinsight.springer.com/drugs/800022295 (accessed on 20 March 2017).
Grempler R., Thomas L., Eckhardt M. et al. Empagliflozin, a novel selective sodium glucose cotransporter-2 (SGLT-2) inhibitor: characterisation and comparison with other SGLT-2 inhibitors. Diabetes Obes. Metab. (2012) 14 83-90.
http://www.diabetes.co.uk/diabetes-medication/forxiga-dapagliflozin.html.
Kurosaki E., Ogasawara H. Ipragliflozin and other sodium-glucose cotransporter-2 (SGLT2) inhibitors in the treatment of type 2 diabetes: preclinical and clinical data. Pharmacol. Ther. (2013) 139 51-59.
Devineni D., Curtin C.R., Polidori D. et al. Pharmacokinetics and pharmacodynamics of canagliflozin, a sodium glucose co-transporter 2 inhibitor, in subjects with type 2 diabetes mellitus. J. Clin. Pharmacol. (2013) 53 601-610.
Scheen A.J. Pharmacokinetic and pharmacodynamic profile of empagliflozin, a sodium glucose co-transporter 2 inhibitor. Clin. Pharmacokinet. (2014) 53 213-225.
Kasichayanula S., Chang M., Hasegawa M. et al. Pharmacokinetics and pharmacodynamics of dapagliflozin, a novel selective inhibitor of sodium-glucose co-transporter type 2, in Japanese subjects without and with type 2 diabetes mellitus. Diabetes Obes. Metab. (2011) 13 357-365.
US Food and Drug Administration [http://www.fda.gov/]. (2014).
Pharmaceuticals and Medical Devices Agency, Japan [http://www.pmda.go.jp/]. (2014).
European Medicines Agency [http://www.ema.europa.eu/ema/]. (2014).
Chao E.C., Henry R.R. SGLT2 inhibition-a novel strategy for diabetes treatment. Nat. Rev. Drug Dis. (2010) 9 551-559.
معلومات مُعتمدة: YSS/2014/000164 DST-SERB India; 37(1643)/15/EMR-II CSIR, India
فهرسة مساهمة: Keywords: diabetes mellitus; diabetic cardiomyopathy; sodium glucose cotransporter (SGLT)
المشرفين على المادة: 0 (Blood Glucose)
0 (Hypoglycemic Agents)
0 (SLC5A1 protein, human)
0 (Sodium-Glucose Transporter 1)
تواريخ الأحداث: Date Created: 20191108 Date Completed: 20201125 Latest Revision: 20201125
رمز التحديث: 20221213
DOI: 10.1111/fcp.12516
PMID: 31698522
قاعدة البيانات: MEDLINE
الوصف
تدمد:1472-8206
DOI:10.1111/fcp.12516