دورية أكاديمية

Positive effects of dietary supplementation of three probiotics on milk yield, milk composition and intestinal flora in Sannan dairy goats varied in kind of probiotics.

التفاصيل البيبلوغرافية
العنوان: Positive effects of dietary supplementation of three probiotics on milk yield, milk composition and intestinal flora in Sannan dairy goats varied in kind of probiotics.
المؤلفون: Ma ZZ; College of Grassland Agriculture, Northwest A&F University, Shaanxi, China., Cheng YY; College of Grassland Agriculture, Northwest A&F University, Shaanxi, China., Wang SQ; College of Grassland Agriculture, Northwest A&F University, Shaanxi, China., Ge JZ; College of Grassland Agriculture, Northwest A&F University, Shaanxi, China., Shi HP; College of Animal Science and Technology, Northwest A&F University, Shaanxi, China., Kou JC; College of Grassland Agriculture, Northwest A&F University, Shaanxi, China.
المصدر: Journal of animal physiology and animal nutrition [J Anim Physiol Anim Nutr (Berl)] 2020 Jan; Vol. 104 (1), pp. 44-55. Date of Electronic Publication: 2019 Nov 07.
نوع المنشور: Journal Article; Randomized Controlled Trial, Veterinary
اللغة: English
بيانات الدورية: Publisher: Blackwell Science Country of Publication: Germany NLM ID: 101126979 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1439-0396 (Electronic) Linking ISSN: 09312439 NLM ISO Abbreviation: J Anim Physiol Anim Nutr (Berl) Subsets: MEDLINE
أسماء مطبوعة: Original Publication: [Berlin] : Blackwell Science, c2001-
مواضيع طبية MeSH: Dietary Supplements* , Probiotics*, Gastrointestinal Microbiome/*drug effects , Goats/*physiology , Lactation/*drug effects , Milk/*chemistry, Animal Feed ; Animal Nutritional Physiological Phenomena ; Animals ; Diet/veterinary ; Female
مستخلص: In this study, we investigated the effects of Saccharomyces cerevisiae (SC), Bacillus subtilis (BS) and Enterococcus faecalis (EF), singly and in combination, on the dry matter intake (DMI), milk production and composition, and faecal microflora of Saanen dairy goats. Fifty goats were randomly divided into five groups: (a) basal diet (control); (b) basal diet + SC; (c) basal diet + BS; (d) basal diet + EF; and (e) basal diet + mixed probiotics. Each treated animal received 5 g/d of probiotics for a total administration of 5 × 1,011 CFU/goat per day. The inclusion of B. subtilis and E. faecalis in the diet of lactating Saanen goats increased DMI (p < .05). Enhanced milk yield was observed with BS and EF. Milk fat percentage was significantly increased by feeding mixed probiotics compared with the control (p < .05); supplying SC, BS and mixed probiotics enhanced the protein percentage (p < .05). The milk lactose percentage in the SC and BS groups was higher than in the control (p < .05). The amount of milk total solids was higher after feeding EF or mixed probiotics than in the control group (p < .05). Non-fat solids showed no notable differences among groups (p > .05). There was no significant influence on gut bacterial abundance and diversity from adding these three probiotics, singly or in combination. Bacteroidales, Escherichia-Shigella and Christensenellaceae abundances were decreased by supplying these probiotics but Succinivibrionaceae increased. In conclusion, there were positive influences of probiotic feed supplementation on intake, milk performance and intestinal microecology.
(© 2019 Blackwell Verlag GmbH.)
References: Bhatt, R. S., & Sahoo, A. (2019). Effect of adding formaldehyde treated protein alone and with Saccharomyces cerevisiae in diet on plane of nutrition, growth performance, rumen fermentation and microbial protein synthesis of finisher lambs. Small Ruminant Research, 171, 42-48. https://doi.org/10.1016/j.smallrumres.2018.12.005.
Bhatt, R. S., Sahoo, A., Karim, S. A., & Gadekar, Y. P. (2016). Effects of Saccharomyces cerevisiae and rumen bypass-fat supplementation on growth, nutrient utilisation, rumen fermentation and carcass traits of lambs. Animal Production Science, 58(3), 530. https://doi.org/10.1071/AN14950.
Chaucheyras-Durand, F., Walker, N. D., & Bach, A. (2008). Effects of active dry yeasts on the rumen microbial ecosystem: Past, present and future. Animal Feed Science and Technology, 145, 5-26. https://doi.org/10.1016/j.anifeedsci.2007.04.019.
Dailidaviciene, J., Budreckiene, R., Gruzauskas, R., Kerziene, S., Andruleviciute, V., & Sinkeviciene, I. (2018). The influence of probiotic additives or multienzyme composition on blood biochemical parameters and milk quality of Lithuanian Black-and-White cattle. Arquivo Brasileiro de Medicina Veterinária e Zootecnia, 70(3), 939-945. https://doi.org/10.1590/1678-4162-9567.
Devi, S. M., Archer, A. C., & Halami, P. M. (2015). Screening, characterization and in vitro evaluation of probiotic properties among lactic acid bacteria through comparative analysis. Probiotics and Antimicrobial Proteins, 7(3), 181-192. https://doi.org/10.1007/s12602-015-9195-5.
Du, R., Jiao, S., Yue, D., An, J., Lv, J., Yan, X., … Han, B. (2018). Probiotic Bacillus amyloliquefaciens c-1 improves growth performance, stimulates gh/igf-1, and regulates the gut microbiota of growth-retarded beef calves. Frontiers in Microbiology, 9. https://doi.org/10.3389/fmicb.2018.02006.
Food and Agriculture Organization of the United Nations Statistics Division. (2016). FAO statistical database. Retrieved from http://www.fao.org/faostat/en/#data/QL.
Gong, Y., Guo, H., Zhang, Z., Zhou, H., Zhao, R., & He, B. (2017). Heat stress reduces sperm motility via activation of glycogen synthase kinase-3α and inhibition of mitochondrial protein import. Frontiers in Physiology, 8, 718. https://doi.org/10.3389/fphys.2017.00718.
Hayakawa, T., Masuda, T., Kurosawa, D., & Tsukahara, T. (2016). Dietary administration of probiotics to sows and/or their neonates improves the reproductive performance, incidence of post-weaning diarrhea and histopathological parameters in the intestine of weaned piglets. Animal Science Journal, 87(12), 1501-1510. https://doi.org/10.1111/asj.12565.
Hu, C., Xing, W., Liu, X., Zhang, X., Li, K., Liu, J., … Tan, C. (2019). Effects of dietary supplementation of probiotic Enterococcus faecium on growth performance and gut microbiota in weaned piglets. AMB Express, 9, 33. https://doi.org/10.1186/s13568-019-0755-z.
Hu, X., Liu, G., Shafer, A. B. A., Wei, Y., Zhou, J., Lin, S., … Liu, S. (2017). Comparative analysis of the gut microbial communities in forest and alpine musk deer using high-throughput sequencing. Frontiers in Microbiology, 8, 572. https://doi.org/10.3389/fmicb.2017.00572.
Jiao, J., Wu, J., Zhou, C., Tang, S., Wang, M., & Tan, Z. (2016). Composition of ileal bacterial community in grazing goats varies across non-rumination, transition and rumination stages of life. Frontiers in Microbiology, 7, 1364. https://doi.org/10.3389/fmicb.2016.01364.
Joch, M., Mrazek, J., Skrivanova, E., Cermak, L., & Marounek, M. (2018). Effects of pure plant secondary metabolites on methane production, rumen fermentation and rumen bacteria populations in vitro. Journal of Animal Physiology and Animal Nutrition, 102, 1-13. https://doi.org/10.1111/jpn.12910.
Kholif, A. E., Abdo, M. M., Anele, U. Y., El-Sayed, M. M., & Morsy, T. A. (2017). Saccharomyces cerevisiae does not work synergistically with exogenous enzymes to enhance feed utilization, ruminal fermentation. Livestock Science, 206, 17-23. https://doi.org/10.1016/j.livsci.2017.10.002.
Kong, F., Hua, Y., Zeng, B., Ning, R., Li, Y., & Zhao, J. (2016). Gut microbiota signatures of longevity. Current Biology, 26(18), R832-R833. https://doi.org/10.1016/j.cub.2016.08.015.
Kritas, S. K., Govaris, A., Christodoulopoulos, G., & Burriel, A. R. (2010). Effect of Bacillus licheniformis and Bacillus subtilis supplementation of ewe's feed on sheep milk production and young lamb mortality. Journal of Veterinary Medicine, 53(4), 170-173. https://doi.org/10.1111/j.1439-0442.2006.00815.x.
Li, A., Jiang, X., Wang, Y., Zhang, L., Zhang, H., Mehmood, K., … Li, J. (2019). The impact of Bacillus subtilis 18 isolated from Tibetan yaks on growth performance and gut microbial community in mice. Microbial Pathogenesis, 128, 153-161. https://doi.org/10.1016/j.micpath.2018.12.031.
Li, C. L., Wang, J., Zhang, H. J., Wu, S. G., Hui, Q. R., Yang, C. B., … Qi, G. H. (2019). Intestinal morphologic and microbiota responses to dietary Bacillus spp. in a broiler chicken model. Frontiers in Physiology, 9, 1968. https://doi.org/10.3389/fphys.2018.01968.
Li, P., Niu, Q., Wei, Q., Zhang, Y., Ma, X., Kim, S. W., … Huang, R. H. (2017). Microbial shifts in the porcine distal gut in response to diets supplemented with Enterococcus faecalis as alternatives to antibiotics. Scientific Reports, 7, 41395. https://doi.org/10.1038/srep41395.
Linn, J. G. (1988). Factors affecting the composition of milk from dairy cows. In National Research Council (US) Committee on Technological Options to Improve the Nutritional Attributes of Animal Products (Ed.), Designing foods: Animal in the marketplace (pp. 224). Washington, DC: National Academy Press.
Malik, R. K., Montecalvo, M. A., Reale, M. R., Li, K., Maw, M., & Munoz, J. L. (1999). Epidemiology and control of vancomycin-resistant enterococci in a regional neonatal intensive care unit. The Pediatric Infectious Disease Journal, 18(4), 352-356. https://doi.org/10.1097/00006454-199904000-00009.
Mao, S., Zhang, M., Liu, J., & Zhu, W. (2015). Characterising the bacterial microbiota across the gastrointestinal tracts of dairy cattle: Membership and potential function. Scientific Reports, 5, 16116. https://doi.org/10.1038/srep16116.
Martins, F. S., Silva, A. A., Vieira, A. T., Barbosa, F. H. F., Arantes, R. M. E., & Teixeira, M. M. (2009). Comparative study of Bifidobacterium animalis, Escherichia coli, Lactobacillus casei, and Saccharomyces boulardii, probiotic properties. Archives of Microbiology, 191(8), 623-630. https://doi.org/10.1007/s00203-009-0491-x.
Messias, G. C., Amn, R., Bms, S., Botelho, A. M., Dca, S., Porto, E. S., … Regiane, Y. (2018). Administration of Lactobacillus plantarum lp62 to dam rats at the end of delivery and during lactation affects tgf-β1 level and nutritional milk composition, and body weight of pups. European Journal of Nutrition, 58(3), 1137-1146. https://doi.org/10.1007/s00394-018-1628-y.
Ministry of Agriculture and Rural Affairs of China. (2013). The microbial feed additives certified by ministry of agriculture of China. Retrieved from http://www.moa.gov.cn/.
Montes, A. J., & Pugh, D. G. (1993). The use of probiotics in food-animal practice. Veterinary Medicine, 88(3), 282-288. https://doi.org/10.1016/0165-2427(93)90106-E.
Newbold, C. J., Wallace, R. J., & McIntosh, F. M. (1996). Mode of action of the yeast Saccharomyces cerevisiae as a feed additive for ruminants. The British Journal of Nutrition, 76(2), 249-261. https://doi.org/10.1079/Bjn19960029.
Nocek, J. E., Holt, M. G., & Oppy, J. (2011). Effects of supplementation with yeast culture and enzymatically hydrolyzed yeast on performance of early lactation dairy cattle. Journal of Dairy Science, 94(8), https://doi.org/10.3168/jds.2011-4277.
Nomura, M., Hosoda, J., & Nishimura, S. (1958). Enzyme formation in lysozyme lysate of Bacillus subtilis. Biochimica Et Biophysica Acta, 29(1), 161-167. https://doi.org/10.1016/0006-3002(58)90156-2.
Oliveira, H. R., Silva, F. F., Siqueira, O. H. G. B. D., Souza, N. O., Junqueira, V. S., Resende, M. D. V., … Rodrigues, M. T. (2016). Combining different functions to describe milk, fat, and protein yield in goats using Bayesian multiple-trait random regression models. Journal of Animal Science, 94(5), 1865. https://doi.org/10.2527/jas2015-0150.
Panda, S. K., Padhi, L., & Bastia, A. K. (2013). Antibacterial efficacy of selected Enterococcus strains isolated from traditional rice beverage “handia”. Universal Journal of Food & Nutrition Science, 1(2), 22-28. https://doi.org/10.13189/ujfns.2013.010203.
Paulina, M., & Katarzyna, S. (2018). The role of probiotics, prebiotics and synbiotics in animal nutrition. Gut Pathogens, 10(1). https://doi.org/10.1186/s13099-018-0250-0.
Peng, H., Wang, J. Q., Kang, H. Y., Dong, S. H., Sun, P., Bu, D. P., & Zhou, L. Y. (2012). Effect of feeding Bacillus subtilis natto fermentation product on milk production and composition, blood metabolites and rumen fermentation in early lactation dairy cows. Journal of Animal Physiology & Animal Nutrition, 96(3), 506-512. https://doi.org/10.1111/j.1439-0396.2011.01173.x.
Piewngam, P., Zheng, Y., Nguyen, T. H., Dickey, S. W., Joo, H. S., Villaruz, A. E., … Michael, O. (2018). Pathogen elimination by probiotic Bacillus via signalling interference. Nature, 562(7728), 532-537. https://doi.org/10.1038/s41586-018-0616-y.
Piret, K., Toomas, O., Andres, W., Raivo, L., & Kalle, K. (2009). Effect of yeast culture on milk production and metabolic and reproductive performance of early lactation dairy cows. Acta Veterinaria Scandinavica, 51(1), 32. https://doi.org/10.1186/1751-0147-51-32.
Piva, G., Belladonna, S., Fusconi, G., & Sicbaldi, F. (1993). Effects of yeast on dairy cow performance, ruminal fermentation, blood components, and milk manufacturing properties. Journal of Dairy Science, 76(9), 2717. https://doi.org/10.3168/jds.S0022-0302(93)77608-0.
Poulsen, A.-S. R., Jonge, N., Nielsen, J. L., Højberg, O., Lauridsen, C., Cutting, S. M., & Canibe, N. (2018). Impact of Bacillus spp. spores and gentamicin on the gastrointestinal microbiota of suckling and newly weaned piglets. PLoS ONE, 13(11), e0207382. https://doi.org/10.1371/journal.pone.0207382.
Qiao, G. H., Shan, A. S., Ma, N., Ma, Q. Q., & Sun, Z. W. (2010). Effect of supplemental Bacillus cultures on rumen fermentation and milk yield in Chinese Holstein cows. Journal of Animal Physiology and Animal Nutrition, 94(4), https://doi.org/10.1111/j.1439-0396.2009.00926.x.
Salvati, G. G. S., Morais Júnior, N. N., Melo, A. C. S., Vilela, R. R., Cardoso, F. F., Aronovich, M., … Pereira, M. N. (2015). Response of lactating cows to live yeast supplementation during summer. Journal of Dairy Science, 98(6), 4062-4073. https://doi.org/10.3168/jds.2014-9215.
Setlow, P. (2006). Spores of Bacillus subtilis: Their resistance to and killing by radiation, heat and chemicals. Journal of Applied Microbiology, 101(3), 514-525. https://doi.org/10.1016/j.ijfoodmicro.2016.09.009.
Shang, Q., Shan, X., Cai, C., Hao, J., Li, G., & Yu, G. (2016). Correction: Dietary fucoidan modulates the gut microbiota in mice by increasing the abundance of Lactobacillus and ruminococcaceae. Food & Function, 7(7), 3224. https://doi.org/10.1039/c6fo00309e.
Simon, O., Jadamus, A., & Vahjen, W. (2001). Probiotic feed additives-effectiveness and expected modes of action. Journal of Animal & Feed Sciences, 10(1), 51-67. https://doi.org/10.22358/jafs/70012/2001.
Sousa, M. Â. B., Mendes, E. N., Apolônio, A. C. M., Farias, L. D. M., & Magalhaes, P. P. (2010). Bacteriocin production by Shigella sonnei isolated from faeces of children with acute diarrhoea. Apmis, 118(2), 125-135. https://doi.org/10.1111/j.1600-0463.2009.02570.x.
Souza, V. L., Lopes, N. M., Zacaroni, O. F., Silveira, V. A., Pereira, R. A. N., Freitas, J. A., … Pereirab, M. N. (2017). Lactation performance and diet digestibility of dairy cows in response to the supplementation of Bacillus subtilis, spores. Livestock Science, 200, 35-39. https://doi.org/10.1016/j.livsci.2017.03.023.
Stein, T. (2005). Bacillus subtilis antibiotics: Structures, syntheses and specific functions. Molecular Microbiology, 56(4), 845-857. https://doi.org/10.1111/j.1365-2958.2005.04587.x.
Stella, A. V., Paratte, R., Valnegri, L., Cigalino, G., Soncini, G., Chevaux, E., … Savoinia, G. (2007). Effect of administration of live Saccharomyces cerevisiae on milk production, milk composition, blood metabolites, and faecal flora in early lactating dairy goats. Small Ruminant Research, 67(1), 7-13. https://doi.org/10.1016/j.smallrumres.2005.08.024.
Sun, P., Wang, J. Q., & Deng, L. F. (2013). Effects of Bacillus subtilis natto on milk production, rumen fermentation and ruminal microbiome of dairy cows. Animal, 7(02), 216-222. https://doi.org/10.1017/S1751731112001188.
Takavar, M., Mahdieh, N., Mohammad, R. T., Amir, A. H., Reza, G., & Seyed, S. H. (2019). Administrations of autochthonous probiotics altered juvenile rainbow trout Oncorhynchus mykiss health status, growth performance and resistance to Lactococcus garvieae, an experimental infection. Fish and Shellfish Immunology, 86, 269-279. https://doi.org/10.1016/j.fsi.2018.11.052.
Vanbelle, M., Teller, E., & Focant, M. (1990). Probiotics in animal nutrition: A review. Archiv Für Tierernaehrung, 40(7), 543-567. https://doi.org/10.1080/17450399009428406.
Wang, L., Jin, L., Xue, B., Wang, Z., & Peng, Q. (2019). Gastrointestinal tract of goats: Composition and potential function. Microbiology Open, e820. https://doi.org/10.1002/mbo3.820.
Xiao, J., Alugongo, G. M., Ji, S., Wu, Z., Dong, S., Li, S., … Cao, Z. (2019). Effects of Saccharomyces cerevisiae fermentation products on the microbial community throughout the gastrointestinal tract of calves. Animals, 9, 4. https://doi.org/10.3390/ani9010004.
Zhao, W., Wang, Y., Liu, S., Huang, J., Zhai, Z., He, C., … Meng, H. (2015). The dynamic distribution of porcine microbiota across different ages and gastrointestinal tract segments. PLoS ONE, 10, e0117441. https://doi.org/10.1371/journal.pone.0117441.
Zhong, Y. F., Xue, M. Y., & Liu, J. X. (2018). Composition of rumen bacteria community in dairy cows with different levels of somatic cell counts. Frontiers in Microbiology, 9, 3217. https://doi.org/10.3389/fmicb.2018.03217.
معلومات مُعتمدة: 2018YFD0501905 National Key Research and Development Plan; 2016KTZDNY02-05 Science Foundation of Shaanxi Province of China; 31672398 National Natural Science Foundation of China
فهرسة مساهمة: Keywords: Bacillus subtilis; Enterococcus faecalis; Saccharomyces cerevisiae; DMI; intestinal microecology
تواريخ الأحداث: Date Created: 20191109 Date Completed: 20201116 Latest Revision: 20201116
رمز التحديث: 20221213
DOI: 10.1111/jpn.13226
PMID: 31701580
قاعدة البيانات: MEDLINE
الوصف
تدمد:1439-0396
DOI:10.1111/jpn.13226