دورية أكاديمية

Incorporating tick feeding behaviour into R 0 for tick-borne pathogens.

التفاصيل البيبلوغرافية
العنوان: Incorporating tick feeding behaviour into R 0 for tick-borne pathogens.
المؤلفون: Johnstone-Robertson SP; School of Science, RMIT University, Melbourne, Victoria, Australia. Electronic address: spjohnstonerobertson@gmail.com., Diuk-Wasser MA; Department of Ecology, Evolution, and Environmental Biology, Columbia University, New York, NY, USA., Davis SA; School of Science, RMIT University, Melbourne, Victoria, Australia.
المصدر: Theoretical population biology [Theor Popul Biol] 2020 Feb; Vol. 131, pp. 25-37. Date of Electronic Publication: 2019 Nov 12.
نوع المنشور: Journal Article; Research Support, N.I.H., Extramural; Research Support, U.S. Gov't, Non-P.H.S.
اللغة: English
بيانات الدورية: Publisher: Academic Press Country of Publication: United States NLM ID: 0256422 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1096-0325 (Electronic) Linking ISSN: 00405809 NLM ISO Abbreviation: Theor Popul Biol Subsets: MEDLINE
أسماء مطبوعة: Original Publication: New York, Academic Press.
مواضيع طبية MeSH: Feeding Behavior*, Encephalitis, Tick-Borne/*transmission , Ixodes/*physiology , Lyme Disease/*transmission, Animals ; Basic Reproduction Number ; Borrelia burgdorferi ; Encephalitis Viruses, Tick-Borne ; Ixodes/microbiology ; Ixodes/virology ; Mice
مستخلص: Tick-borne pathogens pose a considerable disease burden in Europe and North America, where increasing numbers of human cases and the emergence of new tick-borne pathogens has renewed interest in resolving the mechanisms underpinning their geographical distribution and abundance. For Borrelia burgdorferi and tick-borne encephalitis (TBE) virus, transmission of infection from one generation of ticks to another occurs when older nymphal ticks infect younger larval ticks feeding on the same host, either indirectly via systemic infection of the vertebrate host or directly when feeding in close proximity. Here, expressions for the basic reproduction number, R 0 , and the related tick type-reproduction number, T, are derived that account for the observation that larval and nymphal ticks tend to aggregate on the same minority of hosts, a tick feeding behaviour known as co-aggregation. The pattern of tick blood meals is represented as a directed, acyclic, bipartite contact network, with individual vertebrate hosts having in-degree, k in , and out-degree, k out , that respectively represent cumulative counts of nymphal and larval ticks fed over the lifetime of the host. The in- and out-degree are not independent when co-aggregation occurs such that [Formula: see text] where 〈.〉 indicates expected value. When systemic infection in the vertebrate host is the dominant transmission route R 0 2 =T, whereas when direct transmission between ticks co-feeding on the same host is dominant then R 0 =T and the effect of co-aggregation on R 0 is more pronounced. Simulations of B. burgdorferi and TBE virus transmission on theoretical tick-mouse contact networks revealed that aggregation and co-aggregation have a synergistic effect on R 0 and T, that co-aggregation always increases R 0 and T, and that aggregation only increases R 0 and T when larvae and nymphs also co-aggregate. Co-aggregation has the greatest absolute effect on R 0 and T when the mean larval burden of hosts is high, and the largest relative effect on R 0 for pathogens sustained by co-feeding transmission, e.g. TBE virus in Europe, compared with those predominantly spread by systemic infection, e.g. B. burgdorferi. For both pathogens, though, co-aggregation increases the mean number of ticks infected per infectious tick, T, and so too the likelihood of pathogen persistence.
Competing Interests: Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
(Copyright © 2019 Elsevier Inc. All rights reserved.)
References: J Med Entomol. 1993 Jan;30(1):295-9. (PMID: 8433342)
J Med Entomol. 1986 Mar 31;23(2):219. (PMID: 3701806)
J Math Biol. 1990;28(4):365-82. (PMID: 2117040)
Ecol Lett. 2009 Dec;12(12):1298-305. (PMID: 19740112)
Parasitology. 1998 Dec;117 ( Pt 6):597-610. (PMID: 9881385)
Proc Biol Sci. 2015 May 7;282(1806):20150203. (PMID: 25833858)
Am Nat. 2008 Jun;171(6):743-54. (PMID: 18462128)
J Clin Microbiol. 1987 Mar;25(3):557-8. (PMID: 3571459)
Folia Parasitol (Praha). 1995;42(1):73-80. (PMID: 9599431)
Med Vet Entomol. 2004 Dec;18(4):387-97. (PMID: 15642006)
Sci Rep. 2017 Jul 10;7(1):5006. (PMID: 28694446)
PLoS Comput Biol. 2014 Nov 13;10(11):e1003931. (PMID: 25393293)
Parasitology. 1999 Feb;118 ( Pt 2):177-86. (PMID: 10028532)
PLoS Negl Trop Dis. 2018 Aug 27;12(8):e0006696. (PMID: 30148847)
Proc Biol Sci. 2003 Jul 7;270(1522):1359-64. (PMID: 12965026)
Phys Rev Lett. 2010 Jun 25;104(25):258701. (PMID: 20867419)
Virology. 1997 Aug 18;235(1):138-43. (PMID: 9300045)
Parasitology. 2012 Oct;139(12):1605-13. (PMID: 23036641)
J Med Entomol. 1993 Jan;30(1):273-6. (PMID: 8433337)
J Med Entomol. 1996 Jan;33(1):189-92. (PMID: 8906929)
Am J Trop Med Hyg. 1998 Jun;58(6):780-5. (PMID: 9660463)
J Theor Biol. 2012 Dec 21;315:110-8. (PMID: 22982137)
Proc Natl Acad Sci U S A. 1997 Jan 7;94(1):338-42. (PMID: 8990210)
Parasitol Today. 1996 Dec;12(12):472-9. (PMID: 15275266)
PLoS One. 2010 Nov 12;5(11):e13796. (PMID: 21103064)
Math Biosci. 2007 Mar;206(1):3-10. (PMID: 16529777)
J Theor Biol. 2013 Oct 21;335:213-21. (PMID: 23850477)
Emerg Infect Dis. 2002 Dec;8(12):1421-5. (PMID: 12498658)
Parasitology. 2015 Feb;142(2):290-302. (PMID: 25295405)
Parasit Vectors. 2009 Sep 04;2(1):41. (PMID: 19732416)
Appl Environ Microbiol. 1998 Aug;64(8):3089-91. (PMID: 9687480)
J Theor Biol. 2011 Jan 21;269(1):96-103. (PMID: 20950628)
J Med Entomol. 2011 Jul;48(4):860-6. (PMID: 21845946)
Epidemics. 2017 Jun;19:33-42. (PMID: 28089780)
Ecology. 2008 Aug;89(8):2259-72. (PMID: 18724736)
Folia Parasitol (Praha). 2002;49(4):323-5. (PMID: 12641208)
Parasitology. 1949 Feb;39(3-4):173-97. (PMID: 18124151)
Ann N Y Acad Sci. 1975;266:61-72. (PMID: 829476)
PLoS One. 2010 Jul 23;5(7):e11745. (PMID: 20668521)
J Med Entomol. 1995 Nov;32(6):765-77. (PMID: 8551498)
معلومات مُعتمدة: R01 GM105246 United States GM NIGMS NIH HHS
فهرسة مساهمة: Keywords: Aggregation; Basic reproduction number; Co-aggregation; Next generation matrix; Tick-borne pathogen transmission network; Tick-host contact network
تواريخ الأحداث: Date Created: 20191116 Date Completed: 20210413 Latest Revision: 20210413
رمز التحديث: 20240513
مُعرف محوري في PubMed: PMC6983347
DOI: 10.1016/j.tpb.2019.10.004
PMID: 31730874
قاعدة البيانات: MEDLINE
الوصف
تدمد:1096-0325
DOI:10.1016/j.tpb.2019.10.004