دورية أكاديمية

A PhotoClick cholesterol-based quantitative proteomics screen for cytoplasmic sterol-binding proteins in Saccharomyces cerevisiae.

التفاصيل البيبلوغرافية
العنوان: A PhotoClick cholesterol-based quantitative proteomics screen for cytoplasmic sterol-binding proteins in Saccharomyces cerevisiae.
المؤلفون: Chauhan N; Department of Biochemistry, Weill Cornell Medical College, 1300 York Ave., New York, NY, 10065, USA., Sere YY; Department of Biochemistry, Weill Cornell Medical College, 1300 York Ave., New York, NY, 10065, USA., Sokol AM; Biomolecular Mass Spectrometry, Max Planck Institute for Heart and Lung Research, W.G. Kerckhoff Institute, Ludwigstr. 43, Bad Nauheim, Germany.; Biomolecular Mass Spectrometry, German Centre for Cardiovascular Research (DZHK), Rhine-Main site, Bad Nauheim, Germany., Graumann J; Biomolecular Mass Spectrometry, Max Planck Institute for Heart and Lung Research, W.G. Kerckhoff Institute, Ludwigstr. 43, Bad Nauheim, Germany.; Biomolecular Mass Spectrometry, German Centre for Cardiovascular Research (DZHK), Rhine-Main site, Bad Nauheim, Germany., Menon AK; Department of Biochemistry, Weill Cornell Medical College, 1300 York Ave., New York, NY, 10065, USA.
المصدر: Yeast (Chichester, England) [Yeast] 2020 Jan; Vol. 37 (1), pp. 15-25.
نوع المنشور: Journal Article; Research Support, Non-U.S. Gov't
اللغة: English
بيانات الدورية: Publisher: Wiley Country of Publication: England NLM ID: 8607637 Publication Model: Print Cited Medium: Internet ISSN: 1097-0061 (Electronic) Linking ISSN: 0749503X NLM ISO Abbreviation: Yeast Subsets: MEDLINE
أسماء مطبوعة: Original Publication: Chichester ; New York : Wiley, c1985-
مواضيع طبية MeSH: Carrier Proteins/*metabolism , Cholesterol/*metabolism , Saccharomyces cerevisiae/*metabolism , Saccharomyces cerevisiae Proteins/*metabolism, Carrier Proteins/genetics ; Cytosol/metabolism ; Ergosterol/metabolism ; Protein Transport ; Proteomics ; Saccharomyces cerevisiae/genetics ; Saccharomyces cerevisiae Proteins/genetics
مستخلص: Ergosterol is a prominent component of the yeast plasma membrane and essential for yeast cell viability. It is synthesized in the endoplasmic reticulum and transported to the plasma membrane by nonvesicular mechanisms requiring carrier proteins. Oxysterol-binding protein homologues and yeast StARkin proteins have been proposed to function as sterol carriers. Although many of these proteins are capable of transporting sterols between synthetic lipid vesicles in vitro, they are not essential for ergosterol transport in cells, indicating that they may be functionally redundant with each other or with additional-as yet unidentified-sterol carriers. To address this point, we hypothesized that sterol transport proteins are also sterol-binding proteins (SBPs), and used an in vitro chemoproteomic strategy to identify all cytosolic SBPs. We generated a cytosol fraction enriched in SBPs and captured the proteins with a photoreactive clickable cholesterol analogue. Quantitative proteomics of the captured proteins identified 342 putative SBPs. Analysis of these identified proteins based on their annotated function, reported drug phenotypes, interactions with proteins regulating lipid metabolism, gene ontology, and presence of mammalian orthologues revealed a subset of 62 characterized and nine uncharacterized candidates. Five of the uncharacterized proteins play a role in maintaining plasma membrane integrity as their absence affects the ability of cells to grow in the presence of nystatin or myriocin. We anticipate that the dataset reported here will be a comprehensive resource for functional analysis of sterol-binding/transport proteins and provide insights into novel aspects of non-vesicular sterol trafficking.
(© 2019 John Wiley & Sons, Ltd.)
References: Alfaro, G., Johansen, J., Dighe, S. A., Duamel, G., Kozminski, K. G., & Beh, C. T. (2011). The sterol-binding protein Kes1/Osh4p is a regulator of polarized exocytosis. Traffic (Copenhagen, Denmark), 12(11), 1521-1536. https://doi.org/10.1111/j.1600-0854.2011.01265.x.
Balakrishnan, R., Park, J., Karra, K., Hitz, B. C., Binkley, G., Hong, E. L., … Cherry, J. M. (2012). YeastMine-An integrated data warehouse for Saccharomyces cerevisiae data as a multipurpose tool-kit. Database: The Journal of Biological Databases and Curation. https://doi.org/10.1093/database/bar062.
Baumann, N. A., Sullivan, D. P., Ohvo-Rekilä, H., Simonot, C., Pottekat, A., Klaassen, Z., … Menon, A. K. (2005). Transport of newly synthesized sterol to the sterol-enriched plasma membrane occurs via nonvesicular equilibration. Biochemistry, 44(15), 5816-5826. https://doi.org/10.1021/bi048296z.
Boersema, P. J., Raijmakers, R., Lemeer, S., Mohammed, S., & Heck, A. J. R. (2009). Multiplex peptide stable isotope dimethyl labeling for quantitative proteomics. Nature Protocols, 4(4), 484-494. https://doi.org/10.1038/nprot.2009.21.
Chauhan, N., Jentsch, J. A., & Menon, A. K. (2019). Measurement of intracellular sterol transport in yeast. Methods in molecular biology (Clifton, N.J.), 1949, 115-136. https://doi.org/10.1007/978-1-4939-9136-5_10.
Cox, J., & Mann, M. (2008). MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nature Biotechnology, 26(12), 1367-1372. https://doi.org/10.1038/nbt.1511.
Crowley, J. H., Leak, F. W., Shianna, K. V., Tove, S., & Parks, L. W. (1998). A mutation in a purported regulatory gene affects control of sterol uptake in Saccharomyces cerevisiae. Journal of Bacteriology, 180(16), 4177-4183.
Dawson, P. A., Van der Westhuyzen, D. R., Goldstein, J. L., & Brown, M. S. (1989). Purification of oxysterol binding protein from hamster liver cytosol. The Journal of Biological Chemistry, 264(15), 9046-9052.
Dittman, J. S., & Menon, A. K. (2017). Speed limits for nonvesicular intracellular sterol transport. Trends in Biochemical Sciences, 42(2), 90-97. https://doi.org/10.1016/j.tibs.2016.11.004.
Elias, J. E., & Gygi, S. P. (2007). Target-decoy search strategy for increased confidence in large-scale protein identifications by mass spectrometry. Nature Methods, 4(3), 207-214. https://doi.org/10.1038/nmeth1019.
Finkelstein, A., & Holz, R. (1973). Aqueous pores created in thin lipid membranes by the polyene antibiotics nystatin and amphotericin B. Membranes, 2, 377-408.
Gatta, A. T., Wong, L. H., Sere, Y. Y., Calderón-Noreña, D. M., Cockcroft, S., Menon, A. K., & Levine, T. P. (2015). A new family of StART domain proteins at membrane contact sites has a role in ER-PM sterol transport. eLife, 4. https://doi.org/10.7554/eLife.07253.
Georgiev, A. G., Sullivan, D. P., Kersting, M. C., Dittman, J. S., Beh, C. T., & Menon, A. K. (2011). Osh proteins regulate membrane sterol organization but are not required for sterol movement between the ER and PM. Traffic (Copenhagen, Denmark), 12(10), 1341-1355. https://doi.org/10.1111/j.1600-0854.2011.01234.x.
Ghaemmaghami, S., Huh, W., Bower, K., Howson, R. W., Belle, A., Dephoure, N., … Weissman, J. S. (2003). Global analysis of protein expression in yeast. Nature, 425(6959), 737-741. https://doi.org/10.1038/nature02046.
Heino, S., Lusa, S., Somerharju, P., Ehnholm, C., Olkkonen, V. M., & Ikonen, E. (2000). Dissecting the role of the golgi complex and lipid rafts in biosynthetic transport of cholesterol to the cell surface. Proceedings of the National Academy of Sciences of the United States of America, 97(15), 8375-8380. https://doi.org/10.1073/pnas.140218797.
Henne, W. M., Liou, J., & Emr, S. D. (2015). Molecular mechanisms of inter-organelle ER-PM contact sites. Current Opinion in Cell Biology, 35, 123-130. https://doi.org/10.1016/j.ceb.2015.05.001.
Hillenmeyer, M. E., Fung, E., Wildenhain, J., Pierce, S. E., Hoon, S., Lee, W., … Giaever, G. (2008). The chemical genomic portrait of yeast: Uncovering a phenotype for all genes. Science (New York, N.Y.), 320(5874), 362-365. https://doi.org/10.1126/science.1150021.
Horenkamp, F. A., Valverde, D. P., Nunnari, J., & Reinisch, K. M. (2018). Molecular basis for sterol transport by StART-like lipid transfer domains. The EMBO Journal, 37(6), pii: e98002. https://doi.org/10.15252/embj.201798002.
Hsu, J., Huang, S., Chow, N., & Chen, S. (2003). Stable-isotope dimethyl labeling for quantitative proteomics. Analytical Chemistry, 75(24), 6843-6852. https://doi.org/10.1021/ac0348625.
Hulce, J. J., Cognetta, A. B., Niphakis, M. J., Tully, S. E., & Cravatt, B. F. (2013). Proteome-wide mapping of cholesterol-interacting proteins in mammalian cells. Nature Methods, 10(3), 259-264. https://doi.org/10.1038/nmeth.2368.
Im, Y. J., Raychaudhuri, S., Prinz, W. A., & Hurley, J. H. (2005). Structural mechanism for sterol sensing and transport by OSBP-related proteins. Nature, 437(7055), 154-158. https://doi.org/10.1038/nature03923.
Jentsch, J., Kiburu, I., Pandey, K., Timme, M., Ramlall, T., Levkau, B., … Menon, A. K. (2018). Structural basis of sterol binding and transport by a yeast StARkin domain. The Journal of Biological Chemistry, 293(15), 5522-5531. https://doi.org/10.1074/jbc.RA118.001881.
Junker, M., & Rapoport, T. A. (2015). Involvement of VAT-1 in phosphatidylserine transfer from the endoplasmic reticulum to mitochondria. Traffic (Copenhagen, Denmark), 16(12), 1306-1317. https://doi.org/10.1111/tra.12336.
Kandutsch, A. A., Chen, H. W., & Shown, E. P. (1977). Binding of 25-hydroxycholesterol and cholesterol to different cytoplasmic proteins. Proceedings of the National Academy of Sciences of the United States of America, 74(6), 2500-2503.
Kandutsch, A. A., & Shown, E. P. (1981). Assay of oxysterol-binding protein in a mouse fibroblast, cell-free system. Dissociation constant and other properties of the system. The Journal of Biological Chemistry, 256(24), 13068-13073.
Kiweler, M., Looso, M., & Graumann, J. (2019). MARMoSET-Extracting publication-ready mass spectrometry metadata from RAW files. Molecular & Cellular Proteomics: MCP., 18, 1700-1702. https://doi.org/10.1074/mcp.TIR119.001505.
Mackinnon, A. L., & Taunton, J. (2009). Target identification by diazirine photo-cross-linking and click chemistry. Current Protocols in Chemical Biology, 1, 55-73. https://doi.org/10.1002/9780470559277.ch090167.
Maeda, K., Anand, K., Chiapparino, A., Kumar, A., Poletto, M., Kaksonen, M., & Gavin, A. (2013). Interactome map uncovers phosphatidylserine transport by oxysterol-binding proteins. Nature, 501(7466), 257-261. https://doi.org/10.1038/nature12430.
Menon, A. K. (2018). Sterol gradients in cells. Current Opinion in Cell Biology, 53, 37-43. https://doi.org/10.1016/j.ceb.2018.04.012.
Menon, A. K., & Levine, T. P. (2015). Cell biology: Countercurrents in lipid flow. Nature, 525(7568), 191-192. https://doi.org/10.1038/525191a.
Milo, R., Jorgensen, P., Moran, U., Weber, G., & Springer, M. (2010). BioNumbers-The database of key numbers in molecular and cell biology. Nucleic Acids Research, 38(Database issue), D750-D753. https://doi.org/10.1093/nar/gkp889.
Miyake, Y., Kozutsumi, Y., Nakamura, S., Fujita, T., & Kawasaki, T. (1995). Serine palmitoyltransferase is the primary target of a sphingosine-like immunosuppressant, ISP-1/myriocin. Biochemical and Biophysical Research Communications, 211(2), 396-403. https://doi.org/10.1006/bbrc.1995.1827.
Murley, A., Sarsam, R. D., Toulmay, A., Yamada, J., Prinz, W. A., & Nunnari, J. (2015). Ltc1 is an ER-localized sterol transporter and a component of ER-mitochondria and ER-vacuole contacts. The Journal of Cell Biology, 209(4), 539-548. https://doi.org/10.1083/jcb.201502033.
Perez-Riverol, Y., Csordas, A., Bai, J., Bernal-Llinares, M., Hewapathirana, S., Kundu, D. J., … Vizcaíno, J. A. (2019). The PRIDE database and related tools and resources in 2019: Improving support for quantification data. Nucleic Acids Research, 47(D1), D442-D450. https://doi.org/10.1093/nar/gky1106.
Quon, E., Sere, Y. Y., Chauhan, N., Johansen, J., Sullivan, D. P., Dittman, J. S., … Menon, A. K. (2018). Endoplasmic reticulum-plasma membrane contact sites integrate sterol and phospholipid regulation. PLoS Biology, 16(5), e2003864. https://doi.org/10.1371/journal.pbio.2003864.
Rappsilber, J., Ishihama, Y., & Mann, M. (2003). Stop and go extraction tips for matrix-assisted laser desorption/ionization, nanoelectrospray, and LC/MS sample pretreatment in proteomics. Analytical Chemistry, 75(3), 663-670. https://doi.org/10.1021/ac026117i.
Raychaudhuri, S., Im, Y. J., Hurley, J. H., & Prinz, W. A. (2006). Nonvesicular sterol movement from plasma membrane to ER requires oxysterol-binding protein-related proteins and phosphoinositides. The Journal of Cell Biology, 173(1), 107-119. https://doi.org/10.1083/jcb.200510084.
Raychaudhuri, S., & Prinz, W. A. (2010). The diverse functions of oxysterol-binding proteins. Annual Review of Cell and Developmental Biology, 26, 157-177. https://doi.org/10.1146/annurev.cellbio.042308.113334.
Rieder, S. E., & Emr, S. D. (2001). Isolation of subcellular fractions from the yeast Saccharomyces cerevisiae. Current protocols in cell biology Chapter 3:Unit 3.8, 8(1), 3-8. https://doi.org/10.1002/0471143030.cb0308s08.
Righetti, P. G., & Boschetti, E. (2013). Detailed methodologies and protocols. In Low-abundance proteome discovery (pp. 263-319). Amsterdam: Elsevier.
Ritchie, M. E., Phipson, B., Wu, D., Hu, Y., Law, C. W., Shi, W., & Smyth, G. K. (2015). limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Research, 43(7), e47. https://doi.org/10.1093/nar/gkv007.
Roelants, F. M., Chauhan, N., Muir, A., Davis, J. C., Menon, A. K., Levine, T. P., & Thorner, J. (2018). TOR complex 2-regulated protein kinase Ypk1 controls sterol distribution by inhibiting StARkin domain-containing proteins located at plasma membrane-endoplasmic reticulum contact sites. Molecular Biology of the Cell, 29(17), 2128-2136. https://doi.org/10.1091/mbc.E18-04-0229.
Saad, H. Y., & Higuchi, W. I. (1965). Water solubility of cholesterol. Journal of Pharmaceutical Sciences, 54(8), 1205-1206. https://doi.org/10.1002/jps.2600540826.
Shianna, K. V., Dotson, W. D., Tove, S., & Parks, L. W. (2001). Identification of a UPC2 homolog in Saccharomyces cerevisiae and its involvement in aerobic sterol uptake. Journal of Bacteriology, 183(3), 830-834. https://doi.org/10.1128/JB.183.3.830-834.2001.
Solanko, L. M., Sullivan, D. P., Sere, Y. Y., Szomek, M., Lunding, A., Solanko, K. A., … Wüstner, D. (2018). Ergosterol is mainly located in the cytoplasmic leaflet of the yeast plasma membrane. Traffic (Copenhagen, Denmark), 19(3), 198-214. https://doi.org/10.1111/tra.12545.
Stark, C., Breitkreutz, B., Reguly, T., Boucher, L., Breitkreutz, A., & Tyers, M. (2006). BioGRID: A general repository for interaction datasets. Nucleic Acids Research, 34(Database issue), D535-D539. https://doi.org/10.1093/nar/gkj109.
Sullivan, D. P., Georgiev, A., & Menon, A. K. (2009). Tritium suicide selection identifies proteins involved in the uptake and intracellular transport of sterols in Saccharomyces cerevisiae. Eukaryotic Cell, 8(2), 161-169. https://doi.org/10.1128/EC.00135-08.
Tian, S., Ohta, A., Horiuchi, H., & Fukuda, R. (2018). Oxysterol-binding protein homologs mediate sterol transport from the endoplasmic reticulum to mitochondria in yeast. The Journal of Biological Chemistry, 293(15), 5636-5648. https://doi.org/10.1074/jbc.RA117.000596.
Tong, J., Manik, M. K., & Im, Y. J. (2018). Structural basis of sterol recognition and nonvesicular transport by lipid transfer proteins anchored at membrane contact sites. Proceedings of the National Academy of Sciences of the United States of America, 115(5), E856-E865. https://doi.org/10.1073/pnas.1719709115.
Tong, J., Manik, M. K., Yang, H., & Im, Y. J. (2016). Structural insights into nonvesicular lipid transport by the oxysterol binding protein homologue family. Biochimica et Biophysica Acta, 1861(8 Pt B), 928-939. https://doi.org/10.1016/j.bbalip.2016.01.008.
UniProt Consortium (2008). The universal protein resource (UniProt). Nucleic Acids Research, 36(Database issue), D190-D195. https://doi.org/10.1093/nar/gkm895.
Urbani, L., & Simoni, R. D. (1990). Cholesterol and vesicular stomatitis virus G protein take separate routes from the endoplasmic reticulum to the plasma membrane. The Journal of Biological Chemistry, 265(4), 1919-1923.
Vik, A., & Rine, J. (2001). Upc2p and Ecm22p, dual regulators of sterol biosynthesis in Saccharomyces cerevisiae. Molecular and Cellular Biology, 21(19), 6395-6405. https://doi.org/10.1128/mcb.21.19.6395-6405.2001.
von Filseck, J. M., Čopič, A., Delfosse, V., Vanni, S., Jackson, C. L., Bourguet, W., & Drin, G. (2015). INTRACELLULAR TRANSPORT. Phosphatidylserine transport by ORP/Osh proteins is driven by phosphatidylinositol 4-phosphate. Science (New York, N.Y.), 349(6246), 432-436. https://doi.org/10.1126/science.aab1346.
Yang, H., Bard, M., Bruner, D. A., Gleeson, A., Deckelbaum, R. J., Aljinovic, G., … Sturley, S. L. (1996). Sterol esterification in yeast: A two-gene process. Science (New York, N.Y.), 272(5266), 1353-1356.
Yang, H., Tong, J., Lee, C. W., Ha, S., Eom, S. H., & Im, Y. J. (2015). Structural mechanism of ergosterol regulation by fungal sterol transcription factor Upc2. Nature Communications, 6, 6129. https://doi.org/10.1038/ncomms7129.
فهرسة مساهمة: Keywords: click chemistry; membrane; non-vesicular transport; proteomics; sterol
المشرفين على المادة: 0 (Carrier Proteins)
0 (Saccharomyces cerevisiae Proteins)
0 (sterol carrier proteins)
97C5T2UQ7J (Cholesterol)
Z30RAY509F (Ergosterol)
تواريخ الأحداث: Date Created: 20191124 Date Completed: 20210319 Latest Revision: 20210319
رمز التحديث: 20240628
DOI: 10.1002/yea.3448
PMID: 31758572
قاعدة البيانات: MEDLINE
الوصف
تدمد:1097-0061
DOI:10.1002/yea.3448