دورية أكاديمية

A selective BCL-X L PROTAC degrader achieves safe and potent antitumor activity.

التفاصيل البيبلوغرافية
العنوان: A selective BCL-X L PROTAC degrader achieves safe and potent antitumor activity.
المؤلفون: Khan S; Department of Pharmacodynamics, University of Florida, Gainesville, FL, USA., Zhang X; Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL, USA., Lv D; Department of Pharmacodynamics, University of Florida, Gainesville, FL, USA., Zhang Q; Department of Leukemia, University of Texas M.D. Anderson Cancer Center, Houston, TX, USA., He Y; Department of Pharmacodynamics, University of Florida, Gainesville, FL, USA., Zhang P; Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL, USA., Liu X; Department of Pharmacodynamics, University of Florida, Gainesville, FL, USA., Thummuri D; Department of Pharmacodynamics, University of Florida, Gainesville, FL, USA., Yuan Y; Department of Pharmacodynamics, University of Florida, Gainesville, FL, USA., Wiegand JS; Department of Pharmacodynamics, University of Florida, Gainesville, FL, USA., Pei J; Department of Pharmacodynamics, University of Florida, Gainesville, FL, USA., Zhang W; Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL, USA., Sharma A; Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL, USA., McCurdy CR; Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL, USA., Kuruvilla VM; Department of Leukemia, University of Texas M.D. Anderson Cancer Center, Houston, TX, USA., Baran N; Department of Leukemia, University of Texas M.D. Anderson Cancer Center, Houston, TX, USA., Ferrando AA; Department of Pediatrics, Pathology, Cell Biology and Systems of Biology and Institute for Cancer Genetics, Columbia University, New York, NY, USA., Kim YM; Department of Pediatrics, Children's Hospital Los Angeles, Los Angeles, CA, USA., Rogojina A; Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA., Houghton PJ; Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA., Huang G; Department of Medicine, the Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA., Hromas R; Department of Medicine, the Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA., Konopleva M; Department of Leukemia, University of Texas M.D. Anderson Cancer Center, Houston, TX, USA., Zheng G; Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL, USA. zhengg@cop.ufl.edu., Zhou D; Department of Pharmacodynamics, University of Florida, Gainesville, FL, USA. zhoudaohong@cop.ufl.edu.
المصدر: Nature medicine [Nat Med] 2019 Dec; Vol. 25 (12), pp. 1938-1947. Date of Electronic Publication: 2019 Dec 02.
نوع المنشور: Journal Article; Research Support, N.I.H., Extramural; Research Support, Non-U.S. Gov't; Research Support, U.S. Gov't, Non-P.H.S.
اللغة: English
بيانات الدورية: Publisher: Nature Publishing Company Country of Publication: United States NLM ID: 9502015 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1546-170X (Electronic) Linking ISSN: 10788956 NLM ISO Abbreviation: Nat Med Subsets: MEDLINE
أسماء مطبوعة: Publication: New York Ny : Nature Publishing Company
Original Publication: New York, NY : Nature Pub. Co., [1995-
مواضيع طبية MeSH: Aniline Compounds/*pharmacology , Sulfonamides/*pharmacology , Thrombocytopenia/*drug therapy , Von Hippel-Lindau Tumor Suppressor Protein/*genetics , bcl-X Protein/*genetics, Aniline Compounds/chemistry ; Animals ; Antineoplastic Agents/pharmacology ; Blood Platelets/drug effects ; Blood Platelets/metabolism ; Gene Expression Regulation, Neoplastic/drug effects ; Heterografts ; Humans ; Mice ; Proteolysis ; Sulfonamides/chemistry ; Thrombocytopenia/genetics ; Thrombocytopenia/pathology ; bcl-X Protein/antagonists & inhibitors
مستخلص: B-cell lymphoma extra large (BCL-X L ) is a well-validated cancer target. However, the on-target and dose-limiting thrombocytopenia limits the use of BCL-X L inhibitors, such as ABT263, as safe and effective anticancer agents. To reduce the toxicity of ABT263, we converted it into DT2216, a BCL-X L proteolysis-targeting chimera (PROTAC), that targets BCL-X L to the Von Hippel-Lindau (VHL) E3 ligase for degradation. We found that DT2216 was more potent against various BCL-X L -dependent leukemia and cancer cells but considerably less toxic to platelets than ABT263 in vitro because VHL is poorly expressed in platelets. In vivo, DT2216 effectively inhibits the growth of several xenograft tumors as a single agent or in combination with other chemotherapeutic agents, without causing appreciable thrombocytopenia. These findings demonstrate the potential to use PROTAC technology to reduce on-target drug toxicities and rescue the therapeutic potential of previously undruggable targets. Furthermore, DT2216 may be developed as a safe first-in-class anticancer agent targeting BCL-X L .
References: Hanahan, D. & Weinberg, R. A. Hallmarks of cancer: the next generation. Cell. 144, 646–674 (2011). (PMID: 2137623010.1016/j.cell.2011.02.01321376230)
Singh, R., Letai, A. & Sarosiek, K. Regulation of apoptosis in health and disease: the balancing act of BCL-2 family proteins. Nat. Rev. Mol. Cell Biol. 20, 175–193 (2019). (PMID: 3065560910.1038/s41580-018-0089-830655609)
Igney, F. H. & Krammer, P. H. Death and anti-death: tumour resistance to apoptosis. Nat. Rev. Cancer 2, 277–288 (2002). (PMID: 1200198910.1038/nrc77612001989)
Ashkenazi, A., Fairbrother, W. J., Leverson, J. D. & Souers, A. J. From basic apoptosis discoveries to advanced selective BCL-2 family inhibitors. Nat. Rev. Drug Discov. 16, 273–284 (2017). (PMID: 2820999210.1038/nrd.2016.25328209992)
Adams, J. M. & Cory, S. The Bcl-2 apoptotic switch in cancer development and therapy. Oncogene 26, 1324–1337 (2007). (PMID: 17322918293098110.1038/sj.onc.1210220)
Reed, J. C. Bcl-2-family proteins and hematologic malignancies: history and future prospects. Blood 111, 3322–3330 (2008). (PMID: 18362212227500210.1182/blood-2007-09-078162)
Thomas, S. et al. Targeting the Bcl-2 family for cancer therapy. Expert Opin. Ther. Targets 17, 61–75 (2013). (PMID: 2317384210.1517/14728222.2013.73300123173842)
Opfermann, J. T. Attacking cancer’s Achilles heel: antagonism of antiapoptotic BCL-2 family members. FEBS J. 283, 2661–2675 (2016). (PMID: 10.1111/febs.13472)
Garner, T. P., Lopez, A., Reyna, D. E., Spitz, A. Z. & Gavathiotis, E. Progress in targeting the BCL-2 family of proteins. Curr. Opin. Chem. Biol. 39, 133–142 (2017). (PMID: 28735187566754510.1016/j.cbpa.2017.06.014)
Delbridge, A. R., Grabow, S., Strasser, A. & Vaux, D. L. Thirty years of BCL-2: translating cell death discoveries into novel cancer therapies. Nat. Rev. Cancer 16, 99–109 (2016). (PMID: 2682257710.1038/nrc.2015.1726822577)
Delbridge, A. R. & Strasser, A. The BCL-2 protein family, BH3-mimetics and cancer therapy. Cell Death Differ. 22, 1071–1080 (2015). (PMID: 25952548457287210.1038/cdd.2015.50)
Oltersdorf, T. et al. An inhibitor of Bcl-2 family proteins induces regression of solid tumours. Nature 435, 677–681 (2005). (PMID: 10.1038/nature035791590220815902208)
Tse, C. et al. ABT-263: a potent and orally bioavailable Bcl-2 family inhibitor. Cancer Res. 68, 3421–3428 (2008). (PMID: 184511701845117010.1158/0008-5472.CAN-07-5836)
Souers, A. J. et al. ABT-199, a potent and selective BCL-2 inhibitor, achieves antitumor activity while sparing platelets. Nat. Med. 19, 202–208 (2013). (PMID: 232916302329163010.1038/nm.3048)
Tao, Z. F. et al. Discovery of a potent and selective BCL-XL inhibitor with in vivo activity. ACS Med. Chem. Lett. 5, 1088–1093 (2014). (PMID: 25313317419063910.1021/ml5001867)
Kotschy, A. et al. The MCL1 inhibitor S63845 is tolerable and effective in diverse cancer models. Nature 538, 477–482 (2016). (PMID: 277601112776011110.1038/nature19830)
Deeks, E. D. Venetoclax: first global approval. Drugs 76, 979–987 (2016). (PMID: 2726033510.1007/s40265-016-0596-x27260335)
Roberts, A. W. et al. Targeting BCL2 with venetoclax in relapsed chronic lymphocytic leukemia. N. Engl. J. Med. 374, 311–322 (2016). (PMID: 266393482663934810.1056/NEJMoa1513257)
Mason, K. D. et al. Programmed anuclear cell death delimits platelet life span. Cell. 128, 1173–1186 (2007). (PMID: 1738288510.1016/j.cell.2007.01.03717382885)
Schoenwaelder, S. M. et al. Bcl-xL-inhibitory BH3 mimetics can induce a transient thrombocytopathy that undermines the hemostatic function of platelets. Blood 118, 1663–1674 (2011). (PMID: 2167334410.1182/blood-2011-04-34784921673344)
Kaefer, A. et al. Mechanism-based pharmacokinetic/pharmacodynamic meta-analysis of navitoclax (ABT-263) induced thrombocytopenia. Cancer Chemother. Pharmacol. 74, 593–602 (2014). (PMID: 2505338910.1007/s00280-014-2530-925053389)
Itchaki, G. & Brown, J. R. The potential of venetoclax (ABT-199) in chronic lymphocytic leukemia. Adv. Hematol. 7, 270–287 (2016). (PMID: 10.1177/2040620716655350)
Perini, G. F., Ribeiro, G. N., Neto, J. V. P., Campos, L. T. & Hamerschlak, N. BCL-2 as therapeutic target for hematological malignancies. J. Hematol. Oncol. 11, 65 (2018). (PMID: 29747654594644510.1186/s13045-018-0608-2)
Leverson, J. D. et al. Exploiting selective BCL-2 family inhibitors to dissect cell survival dependencies and define improved strategies for cancer therapy. Sci. Transl. Med. 7, 279ra40 (2015). (PMID: 257877662578776610.1126/scitranslmed.aaa4642)
Amundson, S. A. et al. An informatics approach identifying markers of chemosensitivity in human cancer cell lines. Cancer Res. 60, 6101–6110 (2000). (PMID: 1108553411085534)
Vogler, M. Targeting BCL2-proteins for the treatment of solid tumours. J. Adv Med. 2014, 943648 (2014).
Lai, A. C. & Crews, C. M. Induced protein degradation: an emerging drug discovery paradigm. Nat. Rev. Drug Discov. 16, 101–114 (2017). (PMID: 2788528310.1038/nrd.2016.21127885283)
Runcie, A. C., Chan, K. H., Zengerle, M. & Ciulli, A. Chemical genetics approaches for selective intervention in epigenetics. Curr. Opin. Chem. Biol. 33, 186–194 (2016). (PMID: 27423045506155810.1016/j.cbpa.2016.06.031)
Deshaies, R. J. Protein degradation: prime time for PROTACs. Nat. Chem. Biol. 11, 634–635 (2015). (PMID: 2628466810.1038/nchembio.188726284668)
Churcher, I. Protac-induced protein degradation in drug discovery: breaking the rules or just making new ones? J. Med. Chem. 61, 444–452 (2018). (PMID: 2914473910.1021/acs.jmedchem.7b0127229144739)
Ohoka, N., Shibata, N., Hattori, T. & Naito, M. Protein knockdown technology: application of ubiquitin ligase to cancer therapy. Curr. Cancer Drug Targets 16, 136–146 (2016). (PMID: 2656011810.2174/156800961666615111212250226560118)
Lu, J. et al. Hijacking the E3 ubiquitin ligase cereblon to efficiently target BRD4. Chem. Biol. 22, 755–763 (2015). (PMID: 26051217447545210.1016/j.chembiol.2015.05.009)
Bondeson, D. P. et al. Catalytic in vivo protein knockdown by small-molecule PROTACs. Nat. Chem. Biol. 11, 611–617 (2015). (PMID: 26075522462985210.1038/nchembio.1858)
Lai, A. C. et al. Modular PROTAC design for the degradation of oncogenic BCR-ABL. Angew. Chem. Int. Ed. 55, 807–810 (2016). (PMID: 10.1002/anie.201507634)
Raina, K. et al. PROTAC-induced BET protein degradation as a therapy for castration-resistant prostate cancer. Proc. Natl Acad. Sci. USA 113, 7124–7129 (2016). (PMID: 2727405210.1073/pnas.1521738113)
Saenz, D. T. et al. Novel BET protein proteolysis-targeting chimera exerts superior lethal activity than bromodomain inhibitor (BETi) against post-myeloproliferative neoplasm secondary (s) AML cells. Leukemia 31, 1951–1961 (2017). (PMID: 28042144553705510.1038/leu.2016.393)
Winter, G. E. et al. Drug development. Phthalimide conjugation as a strategy for in vivo target protein degradation. Science 348, 1376–1381 (2015). (PMID: 25999370493779010.1126/science.aab1433)
Huang, H. T. et al. A chemoproteomic approach to query the degradable kinome using a multi-kinase degrader. Cell Chem. Biol. 25, 88–99.e6 (2018). (PMID: 2912971710.1016/j.chembiol.2017.10.00529129717)
Bray, P. F. et al. The complex transcriptional landscape of the anucleate human platelet. BMC Genomics 14, 1 (2013). (PMID: 23323973372212610.1186/1471-2164-14-1)
Kissopoulou, A., Jonasson, J., Lindahl, T. L. & Osman, A. Next generation sequencing analysis of human platelet PolyA + mRNAs and rRNA-depleted total RNA. PLoS One 8, e81809 (2013). (PMID: 24349131385954510.1371/journal.pone.0081809)
Cerami, E. et al. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov. 2, 401–404 (2012). (PMID: 2258887710.1158/2159-8290.CD-12-009522588877)
Gao, J. et al. Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci. Signal. 6, pl1 (2013). (PMID: 23550210416030710.1126/scisignal.2004088)
Vogler, M. et al. BCL2/BCL-X(L) inhibition induces apoptosis, disrupts cellular calcium homeostasis, and prevents platelet activation. Blood. 117, 7145–7154 (2011). (PMID: 2156204710.1182/blood-2011-03-34481221562047)
Gadd, M. S. et al. Structural basis of PROTAC cooperative recognition for selective protein degradation. Nat. Chem. Biol. 13, 514–521 (2017). (PMID: 28288108539235610.1038/nchembio.2329)
Nowak, R. P. et al. Plasticity in binding confers selectivity in ligand-induced protein degradation. Nat. Chem. Biol. 14, 706–714 (2018). (PMID: 29892083620224610.1038/s41589-018-0055-y)
Riching, K. M. et al. Quantitative live-cell kinetic degradation and mechanistic profiling of PROTAC mode of action. ACS Chem. Biol. 13, 2758–2770 (2018). (PMID: 3013796210.1021/acschembio.8b0069230137962)
Farmer, T., O’Neill, K. L., Naslavsky, N., Luo, X. & Caplan, S. Retromer facilitates the localization of Bcl-xL to the mitochondrial outer membrane. Mol. Biol. Cell 30, 1138–1146 (2019). (PMID: 30840537672452410.1091/mbc.E19-01-0044)
Smith, B. E. et al. Differential PROTAC substrate specificity dictated by orientation of recruited E3 ligase. Nat. Commun. 10, 131 (2019). (PMID: 30631068632858710.1038/s41467-018-08027-7)
Morowski, M. et al. Only severe thrombocytopenia results in bleeding and defective thrombus formation in mice. Blood 121, 4938–4947 (2013). (PMID: 2358488010.1182/blood-2012-10-46145923584880)
Rinder, H. M. et al. Correlation of thrombosis with increased platelet turnover in thrombocytosis. Blood 91, 1288–1294 (1998). (PMID: 945475910.1182/blood.V91.4.12889454759)
Koch, R. et al. Biomarker-driven strategy for MCL1 inhibition in T-cell lymphomas. Blood 133, 566–575 (2018). (PMID: 3049806410.1182/blood-2018-07-86552730498064)
Berger, S. et al. Computationally designed high specificity inhibitors delineate the roles of BCL2 family proteins in cancer. eLife. 5, e20352 (2016). (PMID: 27805565512764110.7554/eLife.20352)
Hikita, H. et al. Mcl-1 and Bcl-xL cooperatively maintain integrity of hepatocytes in developing and adult murine liver. Hepatology 50, 1217–1226. (PMID: 19676108356085210.1002/hep.23126)
Chen, J. et al. The Bcl-2/Bcl-X(L)/Bcl-w inhibitor, navitoclax, enhances the activity of chemotherapeutic agents in vitro and in vivo. Mol. Cancer Ther. 10, 2340–2349 (2011). (PMID: 2191485310.1158/1535-7163.MCT-11-041521914853)
Ackler, S. et al. The Bcl-2 inhibitor ABT-263 enhances the response of multiple chemotherapeutic regimens in hematologic tumors in vivo. Cancer Chemother. Pharmacol. 66, 869–880 (2010). (PMID: 2009906410.1007/s00280-009-1232-120099064)
Pompili, L., Porru, M., Caruso, C., Biroccio, A. & Leonetti, C. Patient-derived xenografts: a relevant preclinical model for drug development. J. Exp. Clin. Cancer Res. 35, 189 (2016). (PMID: 27919280513901810.1186/s13046-016-0462-4)
Zengerle, M., Chan, K. H. & Ciulli, A. Selective small molecule induced degradation of the BET bromodomain protein BRD4. ACS Chem. Biol. 10, 1770–1777 (2015). (PMID: 26035625454825610.1021/acschembio.5b00216)
Bondeson, D. P. et al. Lessons in PROTAC design from selective degradation with a promiscuous warhead. Cell Chem Biol. 25, 78–87.e5 (2018). (PMID: 2912971810.1016/j.chembiol.2017.09.01029129718)
Lv, D.-W., Zhang, K. & Li, R. Interferon regulatory factor 8 regulates aspase-1 expression to facilitate Epstein–Barr virus reactivation in response to B cell receptor stimulation and chemical induction. PLoS Pathog. 14, e1006868 (2018). (PMID: 29357389579419210.1371/journal.ppat.1006868)
Wiśniewski, J. R. et al. Universal sample preparation method for proteome analysis. Nat. Methods 6, 359–362 (2009). (PMID: 10.1038/nmeth.1322)
Nesvizhskii, A. I., Keller, A., Kolker, E. & Aebersold, R. A statistical model for identifying proteins by tandem mass spectrometry. Anal. Chem. 75, 4646–4658 (2003). (PMID: 1463207610.1021/ac034126114632076)
Tyanova, S. et al. The Perseus computational platform for comprehensive analysis of (prote) omics data. Nat. Methods 13, 731–740 (2016). (PMID: 2734871210.1038/nmeth.390127348712)
Vizcaíno, J. A. et al. The PRoteomics IDEntifications (PRIDE) database and associated tools: status in 2013. Nucleic Acids Res. 41, D1063–D1069 (2013). (PMID: 2320388210.1093/nar/gks126223203882)
US Food and Drug Administration. Bioanalytical Method Validation, Guidance for Industry (US Department of Health and Human Services Food and Drug Administration, 2018).
معلومات مُعتمدة: R35 CA210065 United States CA NCI NIH HHS; R01 GM109645 United States GM NIGMS NIH HHS; R01 CA211963 United States CA NCI NIH HHS; R01 CA219836 United States CA NCI NIH HHS; R01 CA200673 United States CA NCI NIH HHS; R21 CA223371 United States CA NCI NIH HHS; R01 CA203834 United States CA NCI NIH HHS; R01 CA205224 United States CA NCI NIH HHS; R01 CA242003 United States CA NCI NIH HHS
المشرفين على المادة: 0 (Aniline Compounds)
0 (Antineoplastic Agents)
0 (BCL2L1 protein, human)
0 (Sulfonamides)
0 (bcl-X Protein)
EC 2.3.2.27 (Von Hippel-Lindau Tumor Suppressor Protein)
EC 6.3.2.- (VHL protein, human)
XKJ5VVK2WD (navitoclax)
تواريخ الأحداث: Date Created: 20191204 Date Completed: 20200127 Latest Revision: 20220420
رمز التحديث: 20240628
مُعرف محوري في PubMed: PMC6898785
DOI: 10.1038/s41591-019-0668-z
PMID: 31792461
قاعدة البيانات: MEDLINE
الوصف
تدمد:1546-170X
DOI:10.1038/s41591-019-0668-z