دورية أكاديمية

The glycolytic shift was involved in CdTe/ZnS quantum dots inducing microglial activation mediated through the mTOR signaling pathway.

التفاصيل البيبلوغرافية
العنوان: The glycolytic shift was involved in CdTe/ZnS quantum dots inducing microglial activation mediated through the mTOR signaling pathway.
المؤلفون: Wu T; Key Laboratory of Environmental Medicine and Engineering, Ministry of Education; School of Public Health, Southeast University, Nanjing, People's Republic of China., He K; Key Laboratory of Environmental Medicine and Engineering, Ministry of Education; School of Public Health, Southeast University, Nanjing, People's Republic of China.; Blood Transfusion Department, Zhongda Hospital, Southeast University, Nanjing, People's Republic of China., Liang X; Key Laboratory of Environmental Medicine and Engineering, Ministry of Education; School of Public Health, Southeast University, Nanjing, People's Republic of China., Wei T; Key Laboratory of Environmental Medicine and Engineering, Ministry of Education; School of Public Health, Southeast University, Nanjing, People's Republic of China., Wang Y; Key Laboratory of Environmental Medicine and Engineering, Ministry of Education; School of Public Health, Southeast University, Nanjing, People's Republic of China., Zou L; Key Laboratory of Environmental Medicine and Engineering, Ministry of Education; School of Public Health, Southeast University, Nanjing, People's Republic of China., Zhang T; Key Laboratory of Environmental Medicine and Engineering, Ministry of Education; School of Public Health, Southeast University, Nanjing, People's Republic of China., Xue Y; Key Laboratory of Environmental Medicine and Engineering, Ministry of Education; School of Public Health, Southeast University, Nanjing, People's Republic of China., Tang M; Key Laboratory of Environmental Medicine and Engineering, Ministry of Education; School of Public Health, Southeast University, Nanjing, People's Republic of China.
المصدر: Journal of applied toxicology : JAT [J Appl Toxicol] 2020 Mar; Vol. 40 (3), pp. 388-402. Date of Electronic Publication: 2019 Dec 04.
نوع المنشور: Journal Article; Research Support, Non-U.S. Gov't
اللغة: English
بيانات الدورية: Publisher: John Wiley And Sons Country of Publication: England NLM ID: 8109495 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1099-1263 (Electronic) Linking ISSN: 0260437X NLM ISO Abbreviation: J Appl Toxicol Subsets: MEDLINE
أسماء مطبوعة: Publication: : Chichester : John Wiley And Sons
Original Publication: [Philadelphia, Pa. : Heyden & Son, c1981-
مواضيع طبية MeSH: Cadmium Compounds/*toxicity , Glycolysis/*drug effects , Hippocampus/*drug effects , Microglia/*drug effects , Quantum Dots/*toxicity , Sulfides/*toxicity , TOR Serine-Threonine Kinases/*metabolism , Tellurium/*toxicity , Zinc Compounds/*toxicity, Animals ; Cell Line ; Hippocampus/enzymology ; Hippocampus/ultrastructure ; Male ; Mice, Inbred ICR ; Microglia/enzymology ; Microglia/ultrastructure ; Oxidative Stress/drug effects ; Phenotype ; Signal Transduction
مستخلص: The excellent optical property and relatively low toxicity of CdTe/ZnS core/shell quantum dots (QDs) make them an advanced fluorescent probe in the application of biomedicines, particularly in neuroscience. Thus, it is important to evaluate the biosafety of CdTe/ZnS QDs on the central nervous system (CNS). Our previous studies have suggested that the high possibility of CdTe/ZnS QDs being transported into the brain across the blood-brain barrier resulted in microglial activation and a shift of glycometabolism, but their underlying mechanism remains unclear. In this study, when mice were injected intravenously with CdTe/ZnS QDs through tail veins, the microglial activation, polarized into both M1 phenotype and M2 phenotype, and the neuronal impairment were observed in the hippocampus. Meanwhile, the increased pro- and anti-inflammatory cytokines released from BV2 microglial cells treated with CdTe/ZnS QDs also indicated that QD exposure was capable of inducing microglial activation in vitro. We further demonstrated that the glycolytic shift from oxidative phosphorylation switching into aerobic glycolysis was required in the microglial activation into M1 phenotype induced by CdTe/ZnS QD treatment, which was mediated through the mTOR signaling pathway. The findings, taken together, provide a mechanistic insight regarding the CdTe/ZnS QDs inducing microglial activation and the role of the glycolytic shift in it.
(© 2019 John Wiley & Sons, Ltd.)
References: Chen, N., He, Y., Su, Y., Li, X., Huang, Q., Wang, H., … Fan, C. (2012). The cytotoxicity of cadmium-based quantum dots. Biomaterials, 33, 1238-1244. https://doi.org/10.1016/j.biomaterials.2011.10.070.
Cheng, S.-C., Quintin, J., Cramer, R. A., Shepardson, K. M., Saeed, S., Kumar, V., … Netea, M. G. (2014). mTOR- and HIF-1α-mediated aerobic glycolysis as metabolic basis for trained immunity. Science, 345, 1250684. https://doi.org/10.1126/science.1250684.
Dello Russo, C., Lisi, L., Tringali, G., & Navarra, P. (2009). Involvement of mTOR kinase in cytokine-dependent microglial activation and cell proliferation. Biochemical Pharmacology, 78, 1242-1251. https://doi.org/10.1016/j.bcp.2009.06.097.
Demetrius, L. A., & Simon, D. K. (2012). An inverse-Warburg effect and the origin of Alzheimer's disease. Biogerontology, 13, 583-594. https://doi.org/10.1007/s10522-012-9403-6.
Dennis, P. B., Jaeschke, A., Saitoh, M., Fowler, B., Kozma, S. C., & Thomas, G. (2001). Mammalian TOR: a homeostatic ATP sensor. Science, 294, 1102-1105. https://doi.org/10.1126/science.1063518.
Elston, T., Wang, H. Y., & Oster, G. (1998). Energy transduction in ATP synthase. Nature, 391, 510-513.
Glenn, J. A., Ward, S. A., Stone, C. R., Booth, P. L., & Thomas, W. E. (1992). Characterisation of ramified microglial cells: detailed morphology, Morphological Plasticity and Proliferative Capability. Journal of Anatomy, 180(Pt 1), 109-118.
González-Scarano, F., & Baltuch, G. (1999). Microglia as mediators of inflammatory and degenerative diseases. Annual Review of Neuroscience, 22, 219-240. https://doi.org/10.1146/annurev.neuro.22.1.219.
Gu, L., Xie, C., Peng, Q., Zhang, J., Li, J., & Tang, Z. (2019). Arecoline suppresses epithelial cell viability through the Akt/mTOR signaling pathway via upregulation of PHLPP2. Toxicology, 419, 32-39. https://doi.org/10.1016/j.tox.2019.03.006.
Gu, R., Zhang, F., Chen, G., Han, C., Liu, J., Ren, Z., … Zhen, X. (2017). Clk1 deficiency promotes neuroinflammation and subsequent dopaminergic cell death through regulation of microglial metabolic reprogramming. Brain, Behavior, and Immunity, 60, 206-219. https://doi.org/10.1016/j.bbi.2016.10.018.
Gu, W., Wang, Y., Qiu, Z., Dong, J., Wang, Y., & Chen, J. (2018). Mitogen-activated protein kinase signaling is involved in nonylphenol-induced proinflammatory cytokines secretion by BV2 microglia. Journal of Applied Toxicology, 38, 958-967. https://doi.org/10.1002/jat.3602.
He, K., Liang, X., Wei, T., Liu, N., Wang, Y., Zou, L., … Tang, M. (2019). DNA damage in BV-2 cells: An important supplement to the neurotoxicity of CdTe quantum dots. Journal of Applied Toxicology, 39, 525-539. https://doi.org/10.1002/jat.3745.
Hopkins, L. E., Patchin, E. S., Chiu, P. L., Brandenberger, C., Smiley-Jewell, S., & Pinkerton, K. E. (2014). Nose-to-brain transport of aerosolised quantum dots following acute exposure. Nanotoxicology, 8, 885-893. https://doi.org/10.3109/17435390.2013.842267.
Huang, N., Cheng, S., Zhang, X., Tian, Q., Pi, J., Tang, J., … Cheng, Y. (2017). Efficacy of NGR peptide-modified PEGylated quantum dots for crossing the blood-brain barrier and targeted fluorescence imaging of glioma and tumor vasculature. Nanomedicine, 13, 83-93. https://doi.org/10.1016/j.nano.2016.08.029.
Lin, C. C., Han, H. V., Chen, H. C., Chen, K. J., Tsai, Y. L., Lin, W. Y., … Yu, P. (2014). Highly efficient multiple-layer CdS quantum dot sensitized III-V solar cells. Journal of Nanoscience and Nanotechnology, 14, 1051-1063. https://doi.org/10.1166/jnn.2014.9125.
Lu, J., Tang, M., & Zhang, T. (2019). Review of toxicological effect of quantum dots on the liver. Journal of Applied Toxicology, 39, 72-86. https://doi.org/10.1002/jat.3660.
Magistretti, P. J. (2014). Synaptic plasticity and the Warburg effect. Cell Metabolism, 19, 4-5. https://doi.org/10.1016/j.cmet.2013.12.012.
Manshian, B. B., Soenen, S. J., Al-Ali, A., Brown, A., Hondow, N., Wills, J., … Doak, S. H. (2015). Cell type-dependent changes in CdSe/ZnS quantum dot uptake and toxic endpoints. Toxicological Sciences, 144, 246-258. https://doi.org/10.1093/toxsci/kfv002.
Medintz, I. L., Uyeda, H. T., Goldman, E. R., & Mattoussi, H. (2005). Quantum dot bioconjugates for imaging, labelling and sensing. Nature Materials, 4, 435-446. https://doi.org/10.1038/nmat1390.
Minami, S. S., Sun, B., Popat, K., Kauppinen, T., Pleiss, M., Zhou, Y., … Desai, T. (2012). Selective targeting of microglia by quantum dots. Journal of Neuroinflammation, 9, 22-22.
Mo, D., Hu, L., Zeng, G., Chen, G., Wan, J., Yu, Z., … Cheng, M. (2017). Cadmium-containing quantum dots: properties, applications, and toxicity. Applied Microbiology and Biotechnology, 101, 2713-2733. https://doi.org/10.1007/s00253-017-8140-9.
Nguyen, K. C., Rippstein, P., Tayabali, A. F., & Willmore, W. G. (2015). Mitochondrial toxicity of cadmium telluride quantum dot nanoparticles in mammalian hepatocytes. Toxicological Sciences, 146, 31-42. https://doi.org/10.1093/toxsci/kfv068.
Orihuela, R., Mcpherson, C. A., & Harry, G. J. (2016). Microglial M1/M2 polarization and metabolic states. British Journal of Pharmacology, 173, 649-665. https://doi.org/10.1111/bph.13139.
Saikia, D., Chakravarty, S., Sarma, N. S., Bhattacharjee, S., Datta, P., & Adhikary, N. C. (2017). Aqueous synthesis of highly stable CdTe/ZnS core/shell quantum dots for bioimaging. Luminescence, 32, 401-408. https://doi.org/10.1002/bio.3193.
Silva, B. F., Andreani, T., Gavina, A., Vieira, M. N., Pereira, C. M., Rocha-Santos, T., & Pereira, R. (2016). Toxicological impact of cadmium-based quantum dots towards aquatic biota: Effect of natural sunlight exposure. Aquatic Toxicology, 176, 197-207. https://doi.org/10.1016/j.aquatox.2016.05.001.
Srivastava, I. N., Shperdheja, J., Baybis, M., Ferguson, T., & Crino, P. B. (2016). mTOR pathway inhibition prevents neuroinflammation and neuronal death in a mouse model of cerebral palsy. Neurobiology of Disease, 85, 144-154. https://doi.org/10.1016/j.nbd.2015.10.001.
Tang, S., Allagadda, V., Chibli, H., Nadeau, J. L., & Mayer, G. D. (2013). Comparison of cytotoxicity and expression of metal regulatory genes in zebrafish (Danio rerio) liver cells exposed to cadmium sulfate, zinc sulfate and quantum dots. Metallomics, 5, 1411-1422. https://doi.org/10.1039/c3mt20234h.
Tang, Y., & Le, W. (2016). Differential roles of M1 and M2 microglia in neurodegenerative diseases. Molecular Neurobiology, 53, 1181-1194. https://doi.org/10.1007/s12035-014-9070-5.
Thakkar, R., Wang, R., Wang, J., Vadlamudi, R. K., & Brann, D. W. (2018). 17β-Estradiol regulates microglia activation and polarization in the hippocampus following global cerebral ischemia. Oxidative Medicine and Cellular Longevity, 2018, 4248526. https://doi.org/10.1155/2018/4248526.
Walters, R., Kraig, R. P., Medintz, I., Delehanty, J. B., Stewart, M. H., Susumu, K., … Dawson, G. (2012). Nanoparticle targeting to neurons in a rat hippocampal slice culture model. ASN Neuro, 4, 383-392. https://doi.org/10.1042/an20120042.
Walters, R., Medintz, I. L., Delehanty, J. B., Stewart, M. H., Susumu, K., Huston, A. L., … Dawson, G. (2015). The role of negative charge in the delivery of quantum dots to neurons. ASN Neuro, 7, 175909141559238. https://doi.org/10.1177/1759091415592389.
Wang, H., Yang, H., Xu, Z. P., Liu, X., Roberts, M. S., & Liang, X. (2018). Anionic long-circulating quantum dots for long-term intravital vascular imaging. Pharmaceutics, 10. https://doi.org/10.3390/pharmaceutics10040244.
Wang, J., Liu, R., & Liu, B. (2016). Cadmium-containing quantum dots: current perspectives on their application as nanomedicine and toxicity concerns. Mini Reviews in Medicinal Chemistry, 16, 905-916.
Wu, T., Zhang, T., Chen, Y., & Tang, M. (2016). Research advances on potential neurotoxicity of quantum dots. Journal of Applied Toxicology, 36, 345-351.
Xu, L., He, D., & Bai, Y. (2016). Microglia-mediated inflammation and neurodegenerative disease. Molecular Neurobiology, 53, 6709-6715. https://doi.org/10.1007/s12035-015-9593-4.
Yang, H., Rudge, D. G., Koos, J. D., Vaidialingam, B., Yang, H. J., & Pavletich, N. P. (2013). mTOR kinase structure, mechanism and regulation. Nature, 497, 217-223. https://doi.org/10.1038/nature12122.
Yang, H. Y., Fu, Y., Jang, M. S., Li, Y., Yin, W. P., Ahn, T. K., … Lee, D. S. (2017). CdSe@ZnS/ZnS quantum dots loaded in polymeric micelles as a pH-triggerable targeting fluorescence imaging probe for detecting cerebral ischemic area. Colloids and Surfaces. B, Biointerfaces, 155, 497-506. https://doi.org/10.1016/j.colsurfb.2017.04.054.
Yildirimer, L., Thanh, N. T. K., Loizidou, M., & Seifalian, A. M. (2011). Toxicological considerations of clinically applicable nanoparticles. Nano Today, 6, 585-607. https://doi.org/10.1016/j.nantod.2011.10.001.
Zhang, Q. (2013). Imaging single synaptic vesicles in mammalian central synapses with quantum dots. Methods in Molecular Biology, 1026, 57-69. https://doi.org/10.1007/978-1-62703-468-5_5.
Zhao, S. C., Ma, L. S., Chu, Z. H., Xu, H., Wu, W. Q., & Liu, F. (2017). Regulation of microglial activation in stroke. Acta Pharmacologica Sinica, 38, 445-458. https://doi.org/10.1038/aps.2016.162.
Zhao, Y., Zhang, Y., Qin, G., Cheng, J., Zeng, W., Liu, S., … Qu, H. (2017). In vivo biodistribution and behavior of CdTe/ZnS quantum dots. International Journal of Nanomedicine, 12, 1927-1939. https://doi.org/10.2147/ijn.s121075.
فهرسة مساهمة: Keywords: BV2 cells; aerobic glycolysis; inflammatory cytokine; mTOR; microglial activation; quantum dot
المشرفين على المادة: 0 (Cadmium Compounds)
0 (Sulfides)
0 (Zinc Compounds)
EC 2.7.1.1 (mTOR protein, mouse)
EC 2.7.11.1 (TOR Serine-Threonine Kinases)
KPS085631O (zinc sulfide)
NQA0O090ZJ (Tellurium)
STG188WO13 (cadmium telluride)
تواريخ الأحداث: Date Created: 20191206 Date Completed: 20210712 Latest Revision: 20211204
رمز التحديث: 20221213
DOI: 10.1002/jat.3912
PMID: 31802521
قاعدة البيانات: MEDLINE
الوصف
تدمد:1099-1263
DOI:10.1002/jat.3912