دورية أكاديمية

Targeted chemical pressure yields tuneable millimetre-wave dielectric.

التفاصيل البيبلوغرافية
العنوان: Targeted chemical pressure yields tuneable millimetre-wave dielectric.
المؤلفون: Dawley NM; Department of Materials Science and Engineering, Cornell University, Ithaca, NY, USA., Marksz EJ; Department of Materials Science and Engineering, University of Maryland, College Park, MD, USA.; National Institute of Standards and Technology, Boulder, CO, USA., Hagerstrom AM; National Institute of Standards and Technology, Boulder, CO, USA., Olsen GH; School of Applied and Engineering Physics, Cornell University, Ithaca, NY, USA., Holtz ME; Department of Materials Science and Engineering, Cornell University, Ithaca, NY, USA.; School of Applied and Engineering Physics, Cornell University, Ithaca, NY, USA., Goian V; Institute of Physics ASCR, Prague, Czech Republic., Kadlec C; Institute of Physics ASCR, Prague, Czech Republic., Zhang J; Department of Materials Science and Engineering, Cornell University, Ithaca, NY, USA., Lu X; National Institute of Standards and Technology, Boulder, CO, USA., Drisko JA; National Institute of Standards and Technology, Boulder, CO, USA., Uecker R; Leibniz-Institut für Kristallzüchtung, Berlin, Germany., Ganschow S; Leibniz-Institut für Kristallzüchtung, Berlin, Germany., Long CJ; National Institute of Standards and Technology, Boulder, CO, USA., Booth JC; National Institute of Standards and Technology, Boulder, CO, USA., Kamba S; Institute of Physics ASCR, Prague, Czech Republic., Fennie CJ; School of Applied and Engineering Physics, Cornell University, Ithaca, NY, USA., Muller DA; School of Applied and Engineering Physics, Cornell University, Ithaca, NY, USA., Orloff ND; National Institute of Standards and Technology, Boulder, CO, USA., Schlom DG; Department of Materials Science and Engineering, Cornell University, Ithaca, NY, USA. schlom@cornell.edu.; Kavli Institute at Cornell for Nanoscale Science, Ithaca, NY, USA. schlom@cornell.edu.
المصدر: Nature materials [Nat Mater] 2020 Feb; Vol. 19 (2), pp. 176-181. Date of Electronic Publication: 2019 Dec 23.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Nature Pub. Group Country of Publication: England NLM ID: 101155473 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1476-4660 (Electronic) Linking ISSN: 14761122 NLM ISO Abbreviation: Nat Mater Subsets: PubMed not MEDLINE; MEDLINE
أسماء مطبوعة: Original Publication: London, UK : Nature Pub. Group, [2002]-
مستخلص: Epitaxial strain can unlock enhanced properties in oxide materials, but restricts substrate choice and maximum film thickness, above which lattice relaxation and property degradation occur. Here we employ a chemical alternative to epitaxial strain by providing targeted chemical pressure, distinct from random doping, to induce a ferroelectric instability with the strategic introduction of barium into today's best millimetre-wave tuneable dielectric, the epitaxially strained 50-nm-thick n = 6 (SrTiO 3 ) n SrO Ruddlesden-Popper dielectric grown on (110) DyScO 3 . The defect mitigating nature of (SrTiO 3 ) n SrO results in unprecedented low loss at frequencies up to 125 GHz. No barium-containing Ruddlesden-Popper titanates are known, but the resulting atomically engineered superlattice material, (SrTiO 3 ) n-m (BaTiO 3 ) m SrO, enables low-loss, tuneable dielectric properties to be achieved with lower epitaxial strain and a 200% improvement in the figure of merit at commercially relevant millimetre-wave frequencies. As tuneable dielectrics are key constituents of emerging millimetre-wave high-frequency devices in telecommunications, our findings could lead to higher performance adaptive and reconfigurable electronics at these frequencies.
References: Tagantsev, A. K., Sherman, V. O., Astafiev, K. F., Venkatesh, J. & Setter, N. Ferroelectric materials for microwave tunable applications. J. Electroceram. 11, 5–66 (2003).
Bao, P., Jackson, T. J., Wang, X. & Lancaster, M. J. Barium strontium titanate thin film varactors for room temperature microwave device applications. J. Phys. D. 41, 063001 (2008).
Gevorgian, S. Ferroelectrics in Microwave Devices, Circuits and Systems: Physics, Modeling, Fabrication and Measurements (Springer, 2009).
Subramanyam, G. et al. Challenges and opportunities for multi-functional oxide thin films for voltage tunable radio frequency/microwave components. J. Appl. Phys. 114, 191301 (2013).
Meyers, C. J. G., Freeze, C. R., Stemmer, S. & York, R. A. (Ba,Sr)TiO 3 tunable capacitors with RF commutation quality factors exceeding 6000. Appl. Phys. Lett. 109, 112902 (2016).
Vorobiev, A., Rundqvist, P., Khamchane, K. & Gevorgian, S. Microwave loss mechanisms in Ba 0.25 Sr 0.75 TiO 3 thin film varactors. J. Appl. Phys. 96, 4642–4649 (2004).
Lee, C.-H. et al. Exploiting dimensionality and defect mitigation to create tunable microwave dielectrics. Nature 502, 532–536 (2013).
Ruddlesden, S. N. & Popper, P. New compounds of the K 2 NIF 4 type. Acta Crystallogr. 10, 538–539 (1957).
Ruddlesden, S. N. & Popper, P. The compound Sr 3 Ti 2 O 7 and its structure. Acta Crystallogr. 11, 54–55 (1958).
Tilley, R. J. D. Correlation between dielectric constant and defect structure of non-stoichiometric solids. Nature 269, 229–231 (1977).
Tilley, R. J. D. An electron microscope study of perovskite-related oxides in the Sr-Ti-O system. J. Solid State Chem. 21, 293–301 (1977).
Knott, L. J., Cockroft, N. J. & Wright, J. C. Site-selective spectroscopy of erbium-doped SrTiO 3 , Sr 2 TiO 4 , and Sr 3 Ti 2 O 7 . Phys. Rev. B. 51, 5649–5658 (1995).
Choi, K. J. et al. Enhancement of ferroelectricity in strained BaTiO 3 thin films. Science 306, 1005–1009 (2004).
Béa, H. et al. Evidence for room-temperature multiferroicity in a compound with a giant axial ratio. Phys. Rev. Lett. 102, 217603 (2009).
Haislmaier, R. C. et al. Unleashing strain induced ferroelectricity in complex oxide thin films via precise stoichiometry control. Adv. Funct. Mater. 26, 7271–7279 (2016).
Wei, Y. et al. A rhombohedral ferroelectric phase in epitaxially strained Hf 0.5 Zr 0.5 O 2 thin films. Nat. Mater. 17, 1095–1100 (2018).
Wood, C. E. C., Metze, G., Berry, J. & Eastman, L. F. Complex free-carrier profile synthesis by “atomic-plane” doping of MBE GaAs. J. Appl. Phys. 51, 383–387 (1980).
Schubert, E. F. Delta doping of III–V compound semiconductors: Fundamentals and device applications. J. Vac. Sci. Technol. A 8, 2980–2996 (1990).
Birol, T., Benedek, N. A. & Fennie, C. J. Interface control of emergent ferroic order in Ruddlesden–Popper Sr n+1 Ti n O 3n+1 . Phys. Rev. Lett. 107, 257602 (2011).
Neaton, J. B. & Rabe, K. M. Theory of polarization enhancement in epitaxial BaTiO 3 /SrTiO 3 superlattices. Appl. Phys. Lett. 82, 1586–1588 (2003).
Tenne, D. A. et al. Probing nanoscale ferroelectricity by ultraviolet Raman spectroscopy. Science 313, 1614–1616 (2006).
Bland, J. A. The crystal structure of barium orthotitanate, Ba 2 TiO 4 . Acta Crystallogr. 14, 875–881 (1961).
Lee, S., Randall, C. A. & Liu, Z.-K. Modified phase diagram for the barium oxide–titanium dioxide system for the ferroelectric barium titanate. J. Am. Ceram. Soc. 90, 2589–2594 (2007).
Kwestroo, W. & Paping, H. A. M. The systems BaO-SrO-TiO 2 , BaO-CaO-TiO 2 , and SrO-CaO-TiO 2 . J. Am. Ceram. Soc. 42, 292–299 (1959).
Veličkov, B., Kahlenberg, V., Bertram, R. & Bernhagen, M. Crystal chemistry of GdScO 3 , DyScO 3 , SmScO 3 and NdScO 3 . Z. Für. Krist 222, 466–473 (2007).
Xi, X. X. et al. Oxide thin films for tunable microwave devices. J. Electroceram. 4, 393–405 (2000).
Houzet, G., Burgnies, L., Velu, G., Carru, J.-C. & Lippens, D. Dispersion and loss of ferroelectric Ba 0.5 Sr 0.5 TiO 3 thin films up to 110 GHz. Appl. Phys. Lett. 93, 053507 (2008).
Gu, Z. et al. Resonant domain-wall-enhanced tunable microwave ferroelectrics. Nature 560, 622–627 (2018).
Haeni, J. H., Theis, C. D. & Schlom, D. G. RHEED intensity oscillations for the stoichiometric growth of SrTiO 3 thin films by reactive molecular beam epitaxy. J. Electroceram. 4, 385–391 (2000).
Haislmaier, R. C., Stone, G., Alem, N. & Engel-Herbert, R. Creating Ruddlesden–Popper phases by hybrid molecular beam epitaxy. Appl. Phys. Lett. 109, 043102 (2016).
Gevorgian, S. S., Martinsson, T., Linner, P. L. J. & Kollberg, E. L. CAD models for multilayered substrate interdigital capacitors. IEEE Trans. Microw. Theory Tech. 44, 896–904 (1996).
Kidner, N. J., Homrighaus, Z. J., Mason, T. O. & Garboczi, E. J. Modeling interdigital electrode structures for the dielectric characterization of electroceramic thin films. Thin Solid Films 496, 539–545 (2006).
Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B. 54, 11169–11186 (1996).
Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B. 59, 1758–1775 (1999).
Perdew, J. P. et al. Restoring the density-gradient expansion for exchange in solids and surfaces. Phys. Rev. Lett. 100, 136406–136406 (2008).
Monkhorst, H. J. & Pack, J. D. Special points for Brillouin-zone integrations. Phys. Rev. B. 13, 5188–5192 (1976).
Togo, A. & Tanaka, I. First principles phonon calculations in materials science. Scr. Mater. 108, 1–5 (2015).
Togo, A. & Tanaka, I. Evolution of crystal structures in metallic elements. Phys. Rev. B. 87, 184104 (2013).
Stokes, H. T., Hatch, D. M. & Campbell, B. J. ISOTROPY Software Suite (Brigham Young University, 2015); https://stokes.byu.edu/iso/isotropy.php.
Momma, K. & Izumi, F. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr. 44, 1272–1276 (2011).
Marks, R. B. A multiline method of network analyzer calibration. IEEE Trans. Microw. Theory Tech. 39, 1205–1215 (1991).
Williams, D. F., Wang, J. C. M. & Arz, U. An optimal vector-network analyzer calibration algorithm. IEEE Trans. Microw. Theory Tech. 51, 2391–2401 (2003).
Williams, D. F., Marks, R. B. & Davidson, A. Comparison of on-wafer calibrations. In Proc. 38th Automatic RF Techniques Group Conference Dig 68–81 (IEEE, 1991).
Orloff, N. D. et al. A compact variable-temperature broadband series-resistor calibration. IEEE Trans. Microw. Theory Tech. 59, 188–195 (2011).
معلومات مُعتمدة: DE-SC0002334 U.S. Department of Energy (DOE); DE-SC0002334 U.S. Department of Energy (DOE); DE-SC0002334 U.S. Department of Energy (DOE); DE-SC0002334 U.S. Department of Energy (DOE); DE-SC0002334 U.S. Department of Energy (DOE); DE-SC0002334 U.S. Department of Energy (DOE); DMR-1719875 National Science Foundation (NSF); DMR-1719875 National Science Foundation (NSF); DMR-1719875 National Science Foundation (NSF); DMR-1719875 National Science Foundation (NSF); 18-09265S Grantová Agentura České Republiky (Grant Agency of the Czech Republic); 18-09265S Grantová Agentura České Republiky (Grant Agency of the Czech Republic); 18-09265S Grantová Agentura České Republiky (Grant Agency of the Czech Republic); SOLID21 - CZ.02.1.01/0.0/0.0/16_019/0000760 Ministerstvo Školství, Mládeže a Tělovýchovy (Ministry of Education, Youth and Sports); SOLID21 - CZ.02.1.01/0.0/0.0/16_019/0000760 Ministerstvo Školství, Mládeže a Tělovýchovy (Ministry of Education, Youth and Sports); SOLID21 - CZ.02.1.01/0.0/0.0/16_019/0000760 Ministerstvo Školství, Mládeže a Tělovýchovy (Ministry of Education, Youth and Sports)
تواريخ الأحداث: Date Created: 20191225 Latest Revision: 20210119
رمز التحديث: 20231215
DOI: 10.1038/s41563-019-0564-4
PMID: 31873229
قاعدة البيانات: MEDLINE
الوصف
تدمد:1476-4660
DOI:10.1038/s41563-019-0564-4