دورية أكاديمية

Altered properties of brain white matter structural networks in patients with nasopharyngeal carcinoma after radiotherapy.

التفاصيل البيبلوغرافية
العنوان: Altered properties of brain white matter structural networks in patients with nasopharyngeal carcinoma after radiotherapy.
المؤلفون: Chen Q; Center for the Study of Applied Psychology & MRI Center, Key Laboratory of Mental Health and Cognitive Science of Guangdong Province, School of Psychology, Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, 510631, People's Republic of China., Lv X; State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, People's Republic of China., Zhang S; Center for the Study of Applied Psychology & MRI Center, Key Laboratory of Mental Health and Cognitive Science of Guangdong Province, School of Psychology, Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, 510631, People's Republic of China., Lin J; Center for the Study of Applied Psychology & MRI Center, Key Laboratory of Mental Health and Cognitive Science of Guangdong Province, School of Psychology, Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, 510631, People's Republic of China., Song J; Center for the Study of Applied Psychology & MRI Center, Key Laboratory of Mental Health and Cognitive Science of Guangdong Province, School of Psychology, Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, 510631, People's Republic of China., Cao B; Center for the Study of Applied Psychology & MRI Center, Key Laboratory of Mental Health and Cognitive Science of Guangdong Province, School of Psychology, Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, 510631, People's Republic of China., Weng Y; Center for the Study of Applied Psychology & MRI Center, Key Laboratory of Mental Health and Cognitive Science of Guangdong Province, School of Psychology, Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, 510631, People's Republic of China., Li L; State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, People's Republic of China. li2@mail.sysu.edu.cn., Huang R; Center for the Study of Applied Psychology & MRI Center, Key Laboratory of Mental Health and Cognitive Science of Guangdong Province, School of Psychology, Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, 510631, People's Republic of China. ruiwang.huang@gmail.com.
المصدر: Brain imaging and behavior [Brain Imaging Behav] 2020 Dec; Vol. 14 (6), pp. 2745-2761.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Springer Country of Publication: United States NLM ID: 101300405 Publication Model: Print Cited Medium: Internet ISSN: 1931-7565 (Electronic) Linking ISSN: 19317557 NLM ISO Abbreviation: Brain Imaging Behav Subsets: MEDLINE
أسماء مطبوعة: Original Publication: Secaucus, NJ : Springer
مواضيع طبية MeSH: Nasopharyngeal Neoplasms*/diagnostic imaging , Nasopharyngeal Neoplasms*/radiotherapy , White Matter*/diagnostic imaging, Nasopharyngeal Carcinoma/*radiotherapy, Brain/diagnostic imaging ; Diffusion Tensor Imaging ; Humans ; Magnetic Resonance Imaging ; Nasopharyngeal Carcinoma/diagnostic imaging
مستخلص: Previous neuroimaging studies revealed radiation-induced brain injury in patients with nasopharyngeal carcinoma (NPC) in the years after radiotherapy (RT). These injuries may be associated with structural and functional alterations. However, differences in the brain structural connectivity of NPC patients at different times after RT, especially in the early-delayed period, remain unclear. We acquired diffusion tensor imaging (DTI) data from three groups of NPC patients, 25 in the pre-RT (before RT) group, 22 in the early-delayed (1-6 months) period (post-RT-ED) group, and 33 in the late-delayed (>6 months) period (post-RT-LD) group. Then, we constructed brain white matter (WM) structural networks and used graph theory to compare their between-group differences. The NPC patients in the post-RT-ED group showed decreased global properties when compared with the pre-RT group. We also detected the nodes with between-group differences in nodal parameters. The nodes that differed between the post-RT-ED and pre-RT groups were mainly located in the default mode (DMN) and central executive networks (CEN); those that differed between the post-RT-LD and pre-RT groups were located in the limbic system; and those that differed between the post-RT-LD and post-RT-ED groups were mainly in the DMN. These findings may indicate that radiation-induced brain injury begins in the early-delayed period and that a reorganization strategy begins in the late-delayed period. Our findings may provide new insight into the pathogenesis of radiation-induced brain injury in normal-appearing brain tissue from the network perspective.
References: Achard, S., & Bullmore, E. (2007). Efficiency and cost of economical brain functional networks. PLoS Computational Biology, 3(2), e17. https://doi.org/10.1371/journal.pcbi.0030017 . (PMID: 10.1371/journal.pcbi.0030017172746841794324)
Albert, A., Brandi, R. P., Glenn, J. L., & Michael, C. (2014). reatment of radiation-induced cognitive decline. Current Treatment Options in Oncology, 15(4), 539–550. (PMID: 10.1007/s11864-014-0307-3)
Astle, D. E., Luckhoo, H., Woolrich, M., Kuo, B. C., Nobre, A. C., et al. (2015). The neural dynamics of fronto-parietal networks in childhood revealed using magnetoencephalography. Cerebral Cortex, 25(10), 3868–3876. https://doi.org/10.1093/cercor/bhu271 . (PMID: 10.1093/cercor/bhu27125410426)
Avena-Koenigsberger, A., Misic, B., & Sporns, O. (2017). Communication dynamics in complex brain networks. Nature Reviews. Neuroscience, 19(1), 17–33. https://doi.org/10.1038/nrn.2017.149 . (PMID: 10.1038/nrn.2017.14929238085)
Bahrami, N., Seibert, T. M., Karunamuni, R., Bartsch, H., Krishnan, A., Farid, N., Hattangadi-Gluth, J. A., & McDonald, C. (2017). Altered network topology in patients with primary brain tumors after fractionated radiotherapy. Brain Connectivity, 7(5), 299–308. https://doi.org/10.1089/brain.2017.0494 . (PMID: 10.1089/brain.2017.0494284868175510052)
Bassett, D. S., & Sporns, O. (2017). Network neuroscience. Nature Neuroscience, 20(3), 353–364. https://doi.org/10.1038/nn.4502 . (PMID: 10.1038/nn.4502282308445485642)
Behrens, T. E., Woolrich, M. W., Jenkinson, M., Johansen-Berg, H., Nunes, R. G., Clare, S., Matthews, P. M., Brady, J. M., & Smith, S. M. (2003). Characterization and propagation of uncertainty in diffusion-weighted MR imaging. Magnetic Resonance in Medicine, 50(5), 1077–1088. https://doi.org/10.1002/mrm.10609 . (PMID: 10.1002/mrm.1060914587019)
Brown, C. A., Jiang, Y., Smith, C. D., & Gold, B. T. (2018). Age and Alzheimer’s pathology disrupt default mode network functioning via alterations in white matter microstructure but not hyperintensities. Cortex, 104, 58–74. https://doi.org/10.1016/j.cortex.2018.04.006 . (PMID: 10.1016/j.cortex.2018.04.006297583746008234)
Bullmore, E., & Sporns, O. (2009). Complex brain networks: Graph theoretical analysis of structural and functional systems. Nature Reviews. Neuroscience, 10(3), 186–198. https://doi.org/10.1038/nrn2575 . (PMID: 10.1038/nrn2575)
Cao, Y., Tsien, C. I., Sundgren, P. C., Nagesh, V., Normolle, D., Buchtel, H., Junck, L., & Lawrence, T. S. (2009). Dynamic contrast-enhanced magnetic resonance imaging as a biomarker for prediction of radiation-induced neurocognitive dysfunction. Clinical Cancer Research, 15(5), 1747–1754. https://doi.org/10.1158/1078-0432.Ccr-08-1420 . (PMID: 10.1158/1078-0432.Ccr-08-1420192235062699596)
Chen, P. R., Hsu, L. P., Tu, C. E., & Young, Y. H. (2005). Radiation-induced oscillopsia in nasopharyngeal carcinoma patients. International Journal of Radiation Oncology, Biology, Physics, 61(2), 466–470. https://doi.org/10.1016/j.ijrobp.2004.05.016 . (PMID: 10.1016/j.ijrobp.2004.05.01615667968)
Chen, W., Qiu, S., Li, J., Hong, L., Wang, F., et al. (2015). Diffusion tensor imaging study on radiation-induced brain injury in nasopharyngeal carcinoma during and after radiotherapy. Tumori, 101(5), 487–490. https://doi.org/10.5301/tj.5000348 . (PMID: 10.5301/tj.500034825983086)
Cheng, H., Wang, Y., Sheng, J., Kronenberger, W. G., Mathews, V. P., Hummer, T. A., & Saykin, A. J. (2012). Characteristics and variability of structural networks derived from diffusion tensor imaging. Neuroimage, 61(4), 1153–1164. https://doi.org/10.1016/j.neuroimage.2012.03.036 . (PMID: 10.1016/j.neuroimage.2012.03.036224502983500617)
Chua, M. L., & Chan, A. T. (2016). Gemcitabine: A game changer in nasopharyngeal carcinoma. Lancet, 388(10054), 1853–1854. https://doi.org/10.1016/s0140-6736(16)31394-0 . (PMID: 10.1016/s0140-6736(16)31394-027567280)
Collin, G., Scholtens, L. H., Kahn, R. S., Hillegers, M. H. J., & van den Heuvel, M. P. (2017). Affected anatomical rich club and structural-functional coupling in young offspring of schizophrenia and bipolar disorder patients. Biological Psychiatry, 82(10), 746–755. https://doi.org/10.1016/j.biopsych.2017.06.013 . (PMID: 10.1016/j.biopsych.2017.06.01328734460)
Connor, M., Karunamuni, R., McDonald, C., White, N., Pettersson, N., Moiseenko, V., Seibert, T., Marshall, D., Cervino, L., Bartsch, H., Kuperman, J., Murzin, V., Krishnan, A., Farid, N., Dale, A., & Hattangadi-Gluth, J. (2016). Dose-dependent white matter damage after brain radiotherapy. Radiotherapy and Oncology, 121(2), 209–216. https://doi.org/10.1016/j.radonc.2016.10.003 . (PMID: 10.1016/j.radonc.2016.10.003277767475136508)
Cui, Z., Zhong, S., Xu, P., He, Y., & Gong, G. (2013). PANDA: A pipeline toolbox for analyzing brain diffusion images. Frontiers in Human Neuroscience, 7, 42. https://doi.org/10.3389/fnhum.2013.00042 . (PMID: 10.3389/fnhum.2013.00042234398463578208)
Darian-Smith, C., & Gilbert, C. D. (1995). Topographic reorganization in the striate cortex of the adult cat and monkey is cortically mediated. The Journal of Neuroscience, 15(3 Pt 1), 1631–1647. (PMID: 10.1523/JNEUROSCI.15-03-01631.199578911246578152)
De Simoni, S., Grover, P. J., Jenkins, P. O., Honeyfield, L., Quest, R. A., et al. (2016). Disconnection between the default mode network and medial temporal lobes in post-traumatic amnesia. Brain, 139(Pt 12), 3137–3150. https://doi.org/10.1093/brain/aww241 . (PMID: 10.1093/brain/aww241277978055382939)
Desikan, R. S., Segonne, F., Fischl, B., Quinn, B. T., Dickerson, B. C., et al. (2006). An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. Neuroimage, 31(3), 968–980. https://doi.org/10.1016/j.neuroimage.2006.01.021 . (PMID: 10.1016/j.neuroimage.2006.01.021)
Ding, Z., Zhang, H., Lv, X. F., Xie, F., Liu, L., et al. (2018). Radiation-induced brain structural and functional abnormalities in presymptomatic phase and outcome prediction. Human Brain Mapping, 39(1), 407–427. https://doi.org/10.1002/hbm.23852 . (PMID: 10.1002/hbm.2385229058342)
Duan, F., Cheng, J., Jiang, J., Chang, J., Zhang, Y., & Qiu, S. (2016). Whole-brain changes in white matter microstructure after radiotherapy for nasopharyngeal carcinoma: A diffusion tensor imaging study. European Archives of Oto-Rhino-Laryngology, 273(12), 4453–4459. https://doi.org/10.1007/s00405-016-4127-x . (PMID: 10.1007/s00405-016-4127-x27272052)
Edge, S. B., & Compton, C. C. (2010). The American Joint Committee on Cancer: The 7th edition of the AJCC cancer staging manual and the future of TNM. Annals of Surgical Oncology, 17(6), 1471–1474. https://doi.org/10.1245/s10434-010-0985-4 . (PMID: 10.1245/s10434-010-0985-420180029)
Fornito, A., Zalesky, A., & Breakspear, M. (2015). The connectomics of brain disorders. Nature Reviews. Neuroscience, 16(3), 159–172. https://doi.org/10.1038/nrn3901 . (PMID: 10.1038/nrn390125697159)
Franzmeier, N., Rubinski, A., Neitzel, J., Kim, Y., Damm, A., et al. (2019). Functional connectivity associated with tau levels in ageing, Alzheimer’s, and small vessel disease. Brain. https://doi.org/10.1093/brain/awz026 .
Fulford, J., Milton, F., Salas, D., Smith, A., Simler, A., Winlove, C., & Zeman, A. (2018). The neural correlates of visual imagery vividness - an fMRI study and literature review. Cortex, 105, 26–40. https://doi.org/10.1016/j.cortex.2017.09.014 . (PMID: 10.1016/j.cortex.2017.09.01429079342)
Galantucci, S., Agosta, F., Stefanova, E., Basaia, S., van den Heuvel, M. P., et al. (2017). Structural brain connectome and cognitive impairment in Parkinson disease. Radiology, 283(2), 515–525. https://doi.org/10.1148/radiol.2016160274 . (PMID: 10.1148/radiol.201616027427924721)
Gong, G., He, Y., Concha, L., Lebel, C., Gross, D. W., Evans, A. C., & Beaulieu, C. (2009). Mapping anatomical connectivity patterns of human cerebral cortex using in vivo diffusion tensor imaging tractography. Cerebral Cortex, 19(3), 524–536. https://doi.org/10.1093/cercor/bhn102 . (PMID: 10.1093/cercor/bhn10218567609)
Greene-Schloesser, D., Robbins, M. E., Peiffer, A. M., Shaw, E. G., Wheeler, K. T., & Chan, M. D. (2012). Radiation-induced brain injury: A review. Frontiers in Oncology, 2, 73. https://doi.org/10.3389/fonc.2012.00073 . (PMID: 10.3389/fonc.2012.00073228338413400082)
Guo, Z., Han, L., Yang, Y., He, H., Li, J., Chen, H., Song, T., Qiu, Y., & Lv, X. (2018). Longitudinal brain structural alterations in patients with nasopharyngeal carcinoma early after radiotherapy. Neuroimage Clin, 19, 252–259. https://doi.org/10.1016/j.nicl.2018.04.019 . (PMID: 10.1016/j.nicl.2018.04.019300350196051477)
Herynek, V., Burian, M., Jirak, D., Liscak, R., Namestkova, K., et al. (2004). Metabolite and diffusion changes in the rat brain after Leksell Gamma Knife irradiation. Magnetic Resonance in Medicine, 52(2), 397–402. https://doi.org/10.1002/mrm.20150 . (PMID: 10.1002/mrm.2015015282823)
Holdsworth, S. J., Aksoy, M., Newbould, R. D., Yeom, K., Van, A. T., et al. (2012). Diffusion tensor imaging (DTI) with retrospective motion correction for large-scale pediatric imaging. Journal of Magnetic Resonance Imaging, 36(4), 961–971. https://doi.org/10.1002/jmri.23710 . (PMID: 10.1002/jmri.2371022689498)
Hope, T. R., Vardal, J., Bjornerud, A., Larsson, C., Arnesen, M. R., et al. (2015). Serial diffusion tensor imaging for early detection of radiation-induced injuries to normal-appearing white matter in high-grade glioma patients. Journal of Magnetic Resonance Imaging, 41(2), 414–423. https://doi.org/10.1002/jmri.24533 . (PMID: 10.1002/jmri.2453324399480)
Hsiao, K. Y., Yeh, S. A., Chang, C. C., Tsai, P. C., Wu, J. M., et al. (2010). Cognitive function before and after intensity-modulated radiation therapy in patients with nasopharyngeal carcinoma: A prospective study. International Journal of Radiation Oncology, Biology, Physics, 77(3), 722–726. https://doi.org/10.1016/j.ijrobp.2009.06.080 . (PMID: 10.1016/j.ijrobp.2009.06.08020044217)
Jeurissen, B., Descoteaux, M., Mori, S., & Leemans, A. (2017). Diffusion MRI fiber tractography of the brain. NMR in Biomedicine. https://doi.org/10.1002/nbm.3785 .
Jones, D. T., Knopman, D. S., Gunter, J. L., Graff-Radford, J., Vemuri, P., Boeve, B. F., Petersen, R. C., Weiner, M. W., Jack CR Jr, & Alzheimer’s Disease Neuroimaging Initiative. (2016). Cascading network failure across the Alzheimer’s disease spectrum. Brain, 139(Pt 2), 547–562. https://doi.org/10.1093/brain/awv338 . (PMID: 10.1093/brain/awv33826586695)
Jung, W. H., Yucel, M., Yun, J. Y., Yoon, Y. B., Cho, K. I., et al. (2017). Altered functional network architecture in orbitofronto-striato-thalamic circuit of unmedicated patients with obsessive-compulsive disorder. Human Brain Mapping, 38(1), 109–119. https://doi.org/10.1002/hbm.23347 . (PMID: 10.1002/hbm.2334727548880)
Kaplan, C. M., Schrepf, A., Vatansever, D., Larkin, T. E., Mawla, I., et al. (2019). Functional and neurochemical disruptions of brain hub topology in chronic pain. Pain, 160(4), 973–983. https://doi.org/10.1097/j.pain.0000000000001480 . (PMID: 10.1097/j.pain.0000000000001480307632876424595)
Karanian, J. M., & Slotnick, S. D. (2017). False memory for context and true memory for context similarly activate the parahippocampal cortex. Cortex, 91, 79–88. https://doi.org/10.1016/j.cortex.2017.02.007 . (PMID: 10.1016/j.cortex.2017.02.00728318498)
Karunamuni, R., Bartsch, H., White, N. S., Moiseenko, V., Carmona, R., Marshall, D. C., Seibert, T. M., McDonald, C., Farid, N., Krishnan, A., Kuperman, J., Mell, L., Brewer, J. B., Dale, A. M., & Hattangadi-Gluth, J. A. (2016). Dose-dependent cortical thinning after partial brain irradiation in high-grade glioma. International Journal of Radiation Oncology, Biology, Physics, 94(2), 297–304. https://doi.org/10.1016/j.ijrobp.2015.10.026 . (PMID: 10.1016/j.ijrobp.2015.10.02626853338)
Koirala, N., Anwar, A. R., Ciolac, D., Glaser, M., Pintea, B., Deuschl, G., Muthuraman, M., & Groppa, S. (2019). Alterations in white matter network and microstructural integrity differentiate Parkinson’s disease patients and healthy subjects. Frontiers in Aging Neuroscience, 11, 191. https://doi.org/10.3389/fnagi.2019.00191 . (PMID: 10.3389/fnagi.2019.00191314043116676803)
Lai, S. Z., Li, W. F., Chen, L., Luo, W., Chen, Y. Y., et al. (2011). How does intensity-modulated radiotherapy versus conventional two-dimensional radiotherapy influence the treatment results in nasopharyngeal carcinoma patients? International Journal of Radiation Oncology, Biology, Physics, 80(3), 661–668. https://doi.org/10.1016/j.ijrobp.2010.03.024 . (PMID: 10.1016/j.ijrobp.2010.03.02420643517)
Lee, W. H., Bullmore, E., & Frangou, S. (2017). Quantitative evaluation of simulated functional brain networks in graph theoretical analysis. Neuroimage, 146, 724–733. https://doi.org/10.1016/j.neuroimage.2016.08.050 . (PMID: 10.1016/j.neuroimage.2016.08.050275680605312789)
Leemans, A., & Jones, D. K. (2009). The B-matrix must be rotated when correcting for subject motion in DTI data. Magnetic Resonance in Medicine, 61(6), 1336–1349. https://doi.org/10.1002/mrm.21890 . (PMID: 10.1002/mrm.2189019319973)
Lell, M. M. (2015). Therapy-induced changes in head and neck. Imaging of complications and toxicity following tumor therapy (pp. 95–111). Cham: Spring. (PMID: 10.1007/174_2015_1077)
Leng, X., Fang, P., Lin, H., An, J., Tan, X., Zhang, C., Wu, D., Shen, W., & Qiu, S. (2017). Structural MRI research in patients with nasopharyngeal carcinoma following radiotherapy: A DTI and VBM study. Oncology Letters, 14(5), 6091–6096. https://doi.org/10.3892/ol.2017.6968 . (PMID: 10.3892/ol.2017.6968291132515661403)
Li, C., Huang, B., Zhang, R., Ma, Q., Yang, W., Wang, L., Wang, L., Xu, Q., Feng, J., Liu, L., Zhang, Y., & Huang, R. (2017). Impaired topological architecture of brain structural networks in idiopathic Parkinson’s disease: A DTI study. Brain Imaging and Behavior, 11(1), 113–128. https://doi.org/10.1007/s11682-015-9501-6 . (PMID: 10.1007/s11682-015-9501-626815739)
Li, Y., Huang, X., Jiang, J., Hu, W., Hu, J., et al. (2018). Clinical variables for prediction of the therapeutic effects of bevacizumab monotherapy in nasopharyngeal carcinoma patients with radiation-induced brain necrosis. International Journal of Radiation Oncology, Biology, Physics, 100(3), 621–629. https://doi.org/10.1016/j.ijrobp.2017.11.023 . (PMID: 10.1016/j.ijrobp.2017.11.02329413276)
Liang, X., Hsu, L. M., Lu, H., Sumiyoshi, A., He, Y., & Yang, Y. (2018). The rich-club organization in rat functional brain network to balance between communication cost and efficiency. Cerebral Cortex, 28(3), 924–935. https://doi.org/10.1093/cercor/bhw416 . (PMID: 10.1093/cercor/bhw41628108494)
Liao, X., Vasilakos, A. V., & He, Y. (2017). Small-world human brain networks: Perspectives and challenges. Neuroscience and Biobehavioral Reviews, 77, 286–300. https://doi.org/10.1016/j.neubiorev.2017.03.018 . (PMID: 10.1016/j.neubiorev.2017.03.018)
Lin, J., Lv, X., Niu, M., Liu, L., Chen, J., Xie, F., Zhong, M., Qiu, S., Li, L., & Huang, R. (2017). Radiation-induced abnormal cortical thickness in patients with nasopharyngeal carcinoma after radiotherapy. Neuroimage Clin, 14, 610–621. https://doi.org/10.1016/j.nicl.2017.02.025 . (PMID: 10.1016/j.nicl.2017.02.025283489525357686)
Lixia, L., Yang, S., Guangshun, Z., Yizhuo, L., Pu-Yun, O. Y., Yaorong, G., et al. (2018). Temporal lobe injury patterns following intensity modulated radiotherapy in a large cohort of nasopharyngeal carcinoma patients. Oral Oncology, 85, 8–14. (PMID: 10.1016/j.oraloncology.2018.07.020)
Lynall, M. E., Bassett, D. S., Kerwin, R., McKenna, P. J., Kitzbichler, M., et al. (2010). Functional connectivity and brain networks in schizophrenia. The Journal of Neuroscience, 30(28), 9477–9487. https://doi.org/10.1523/jneurosci.0333-10.2010 . (PMID: 10.1523/jneurosci.0333-10.2010206311762914251)
Makale, M. T., McDonald, C. R., Hattangadi-Gluth, J. A., & Kesari, S. (2017). Mechanisms of radiotherapy-associated cognitive disability in patients with brain tumours. Nature Reviews. Neurology, 13(1), 52–64. https://doi.org/10.1038/nrneurol.2016.185 . (PMID: 10.1038/nrneurol.2016.18527982041)
Mao, Y. P., Zhou, G. Q., Liu, L. Z., Guo, R., Sun, Y., Li, L., Lin, A. H., Zeng, M. S., Kang, T. B., Jia, W. H., Shao, J. Y., Mai, H. Q., & Ma, J. (2014). Comparison of radiological and clinical features of temporal lobe necrosis in nasopharyngeal carcinoma patients treated with 2D radiotherapy or intensity-modulated radiotherapy. British Journal of Cancer, 110(11), 2633–2639. https://doi.org/10.1038/bjc.2014.243 . (PMID: 10.1038/bjc.2014.243248097804037838)
Marik, S. A., Yamahachi, H., Meyer zum Alten Borgloh, S., & Gilbert, C. D. (2014). Large-scale axonal reorganization of inhibitory neurons following retinal lesions. The Journal of Neuroscience, 34(5), 1625–1632. https://doi.org/10.1523/JNEUROSCI.4345-13.2014 . (PMID: 10.1523/JNEUROSCI.4345-13.2014244783463905138)
Mattfeld, A. T., Whitfield-Gabrieli, S., Biederman, J., Spencer, T., Brown, A., Fried, R., & Gabrieli, J. D. (2016). Dissociation of working memory impairments and attention-deficit/hyperactivity disorder in the brain. Neuroimage Clin, 10, 274–282. https://doi.org/10.1016/j.nicl.2015.12.003 . (PMID: 10.1016/j.nicl.2015.12.00326900567)
McDowell, L. J., Ringash, J., Xu, W., Chan, B., Lu, L., et al. (2019). A cross sectional study in cognitive and neurobehavioral impairment in long-term nasopharyngeal cancer survivors treated with intensity-modulated radiotherapy. Radiotherapy and Oncology, 131, 179–185. https://doi.org/10.1016/j.radonc.2018.09.012 . (PMID: 10.1016/j.radonc.2018.09.01230279047)
Meng, C., Brandl, F., Tahmasian, M., Shao, J., Manoliu, A., Scherr, M., Schwerthöffer, D., Bäuml, J., Förstl, H., Zimmer, C., Wohlschläger, A. M., Riedl, V., & Sorg, C. (2014). Aberrant topology of striatum’s connectivity is associated with the number of episodes in depression. Brain, 137(Pt 2), 598–609. https://doi.org/10.1093/brain/awt290 . (PMID: 10.1093/brain/awt29024163276)
Menon, V. (2011). Large-scale brain networks and psychopathology: A unifying triple network model. Trends in Cognitive Sciences, 15(10), 483–506. https://doi.org/10.1016/j.tics.2011.08.003 . (PMID: 10.1016/j.tics.2011.08.00321908230)
Mori, S., Crain, B. J., Chacko, V. P., & van Zijl, P. C. (1999). Three-dimensional tracking of axonal projections in the brain by magnetic resonance imaging. Annals of Neurology, 45(2), 265–269. (PMID: 10.1002/1531-8249(199902)45:2<265::AID-ANA21>3.0.CO;2-39989633)
Nation, D. A., Sweeney, M. D., Montagne, A., Sagare, A. P., D’Orazio, L. M., Pachicano, M., Sepehrband, F., Nelson, A. R., Buennagel, D. P., Harrington, M. G., Benzinger, T. L. S., Fagan, A. M., Ringman, J. M., Schneider, L. S., Morris, J. C., Chui, H. C., Law, M., Toga, A. W., & Zlokovic, B. V. (2019). Blood-brain barrier breakdown is an early biomarker of human cognitive dysfunction. Nature Medicine, 25(2), 270–276. https://doi.org/10.1038/s41591-018-0297-y . (PMID: 10.1038/s41591-018-0297-y306432886367058)
Nazem-Zadeh, M. R., Chapman, C. H., Lawrence, T. L., Tsien, C. I., & Cao, Y. (2012). Radiation therapy effects on white matter fiber tracts of the limbic circuit. Medical Physics, 39(9), 5603–5613. https://doi.org/10.1118/1.4745560 . (PMID: 10.1118/1.4745560229576263436921)
O’Donoghue, S., Holleran, L., Cannon, D. M., & McDonald, C. (2017). Anatomical dysconnectivity in bipolar disorder compared with schizophrenia: A selective review of structural network analyses using diffusion MRI. Journal of Affective Disorders, 209, 217–228. https://doi.org/10.1016/j.jad.2016.11.015 . (PMID: 10.1016/j.jad.2016.11.01527930915)
Persson, K., Bohbot, V. D., Bogdanovic, N., Selbaek, G., Braekhus, A., et al. (2018). Finding of increased caudate nucleus in patients with Alzheimer’s disease. Acta Neurologica Scandinavica, 137(2), 224–232. https://doi.org/10.1111/ane.12800 . (PMID: 10.1111/ane.1280028741672)
Puetz, V. B., Parker, D., Kohn, N., Dahmen, B., Verma, R., et al. (2017). Altered brain network integrity after childhood maltreatment: A structural connectomic DTI-study. Human Brain Mapping, 38(2), 855–868. https://doi.org/10.1002/hbm.23423 . (PMID: 10.1002/hbm.2342327774721)
Qiu, Y., Guo, Z., Han, L., Yang, Y., Li, J., Liu, S., & Lv, X. (2018). Network-level dysconnectivity in patients with nasopharyngeal carcinoma (NPC) early post-radiotherapy: Longitudinal resting state fMRI study. Brain Imaging and Behavior, 12(5), 1279–1289. https://doi.org/10.1007/s11682-017-9801-0 . (PMID: 10.1007/s11682-017-9801-029164505)
Rolls, E. T., Joliot, M., & Tzourio-Mazoyer, N. (2015). Implementation of a new parcellation of the orbitofrontal cortex in the automated anatomical labeling atlas. Neuroimage, 122, 1–5. https://doi.org/10.1016/j.neuroimage.2015.07.075 . (PMID: 10.1016/j.neuroimage.2015.07.07526241684)
Rubinov, M., & Sporns, O. (2010). Complex network measures of brain connectivity: Uses and interpretations. Neuroimage, 52(3), 1059–1069. https://doi.org/10.1016/j.neuroimage.2009.10.003 . (PMID: 10.1016/j.neuroimage.2009.10.003)
Seibert, T. M., Karunamuni, R., Bartsch, H., Kaifi, S., Krishnan, A. P., Dalia, Y., Burkeen, J., Murzin, V., Moiseenko, V., Kuperman, J., White, N. S., Brewer, J. B., Farid, N., McDonald, C., & Hattangadi-Gluth, J. A. (2017). Radiation dose-dependent hippocampal atrophy detected with longitudinal volumetric magnetic resonance imaging. International Journal of Radiation Oncology, Biology, Physics, 97(2), 263–269. https://doi.org/10.1016/j.ijrobp.2016.10.035 . (PMID: 10.1016/j.ijrobp.2016.10.03528068234)
Shu, N., Liu, Y., Li, K., Duan, Y., Wang, J., Yu, C., Dong, H., Ye, J., & He, Y. (2011). Diffusion tensor tractography reveals disrupted topological efficiency in white matter structural networks in multiple sclerosis. Cerebral Cortex, 21(11), 2565–2577. https://doi.org/10.1093/cercor/bhr039 . (PMID: 10.1093/cercor/bhr03921467209)
Soussain, C., Ricard, D., Fike, J. R., Mazeron, J. J., Psimaras, D., & Delattre, J. Y. (2009). CNS complications of radiotherapy and chemotherapy. Lancet, 374(9701), 1639–1651. https://doi.org/10.1016/S0140-6736(09)61299-X . (PMID: 10.1016/S0140-6736(09)61299-X19897130)
Stam, C. J. (2014). Modern network science of neurological disorders. Nature Reviews. Neuroscience, 15(10), 683–695. https://doi.org/10.1038/nrn3801 . (PMID: 10.1038/nrn380125186238)
Stone, J. B., & DeAngelis, L. M. (2016). Cancer-treatment-induced neurotoxicity—Focus on newer treatments. Nature Reviews. Clinical Oncology, 13(2), 92–105. https://doi.org/10.1038/nrclinonc.2015.152 . (PMID: 10.1038/nrclinonc.2015.15226391778)
Sun, Y., Zhou, G. Q., Qi, Z. Y., Zhang, L., Huang, S. M., Liu, L. Z., Li, L., Lin, A. H., & Ma, J. (2013). Radiation-induced temporal lobe injury after intensity modulated radiotherapy in nasopharyngeal carcinoma patients: A dose-volume-outcome analysis. BMC Cancer, 13, 397. https://doi.org/10.1186/1471-2407-13-397 . (PMID: 10.1186/1471-2407-13-397239781283851326)
Tang, L. L., Chen, L., Mao, Y. P., Li, W. F., Sun, Y., et al. (2015). Comparison of the treatment outcomes of intensity-modulated radiotherapy and two-dimensional conventional radiotherapy in nasopharyngeal carcinoma patients with parapharyngeal space extension. Radiotherapy and Oncology, 116(2), 167–173. https://doi.org/10.1016/j.radonc.2015.07.038 . (PMID: 10.1016/j.radonc.2015.07.03826316395)
Trivedi, R., Khan, A. R., Rana, P., Haridas, S., Hemanth Kumar, B. S., Manda, K., Rathore, R. K., Tripathi, R. P., & Khushu, S. (2012). Radiation-induced early changes in the brain and behavior: Serial diffusion tensor imaging and behavioral evaluation after graded doses of radiation. Journal of Neuroscience Research, 90(10), 2009–2019. https://doi.org/10.1002/jnr.23073 . (PMID: 10.1002/jnr.2307322605562)
Tuladhar, A. M., Lawrence, A., Norris, D. G., Barrick, T. R., Markus, H. S., et al. (2017). Disruption of rich club organisation in cerebral small vessel disease. Human Brain Mapping, 38(4), 1751–1766. https://doi.org/10.1002/hbm.23479 . (PMID: 10.1002/hbm.2347927935154)
Uehara, T., Yamasaki, T., Okamoto, T., Koike, T., Kan, S., Miyauchi, S., Kira, J., & Tobimatsu, S. (2014). Efficiency of a “small-world” brain network depends on consciousness level: A resting-state FMRI study. Cerebral Cortex, 24(6), 1529–1539. https://doi.org/10.1093/cercor/bht004 . (PMID: 10.1093/cercor/bht00423349223)
van den Heuvel, M. P., Kahn, R. S., Goni, J., & Sporns, O. (2012). High-cost, high-capacity backbone for global brain communication. Proceedings of the National Academy of Sciences of the United States of America, 109(28), 11372–11377. https://doi.org/10.1073/pnas.1203593109 . (PMID: 10.1073/pnas.1203593109227118333396547)
van den Heuvel, M. P., & Sporns, O. (2011). Rich-club organization of the human connectome. The Journal of Neuroscience, 31(44), 15775–15786. https://doi.org/10.1523/jneurosci.3539-11.2011 . (PMID: 10.1523/jneurosci.3539-11.2011220494216623027)
van den Heuvel, M. P., & Sporns, O. (2013). Network hubs in the human brain. Trends in Cognitive Sciences, 17(12), 683–696. https://doi.org/10.1016/j.tics.2013.09.012 . (PMID: 10.1016/j.tics.2013.09.01224231140)
van den Heuvel, M. P., & Sporns, O. (2019). A cross-disorder connectome landscape of brain dysconnectivity. Nature Reviews. Neuroscience, 20(7), 435–446. https://doi.org/10.1038/s41583-019-0177-6 . (PMID: 10.1038/s41583-019-0177-631127193)
van den Heuvel, M. P., Sporns, O., Collin, G., Scheewe, T., Mandl, R. C., et al. (2013). Abnormal rich club organization and functional brain dynamics in schizophrenia. JAMA Psychiatry, 70(8), 783–792. https://doi.org/10.1001/jamapsychiatry.2013.1328 . (PMID: 10.1001/jamapsychiatry.2013.132823739835)
Wang, D., Li, Y. H., Fu, J., & Wang, H. (2016). Diffusion kurtosis imaging study on temporal lobe after nasopharyngeal carcinoma radiotherapy. Brain Research, 1648(Pt A), 387–393. https://doi.org/10.1016/j.brainres.2016.07.041 . (PMID: 10.1016/j.brainres.2016.07.04127514570)
Wang, J., Wang, L., Zang, Y., Yang, H., Tang, H., Gong, Q., Chen, Z., Zhu, C., & He, Y. (2009). Parcellation-dependent small-world brain functional networks: A resting-state fMRI study. Human Brain Mapping, 30(5), 1511–1523. https://doi.org/10.1002/hbm.20623 . (PMID: 10.1002/hbm.2062318649353)
Wang, S., Qiu, D., So, K. F., Wu, E. X., Leung, L. H., et al. (2013). Radiation induced brain injury: Assessment of white matter tracts in a pre-clinical animal model using diffusion tensor MR imaging. Journal of Neuro-Oncology, 112(1), 9–15. https://doi.org/10.1007/s11060-012-1031-0 . (PMID: 10.1007/s11060-012-1031-023334608)
Wang, T. M., Shen, G. P., Chen, M. Y., Zhang, J. B., Sun, Y., et al. (2018). Genome-wide association study of susceptibility loci for radiation-induced brain injury. JNCI Journal of the National Cancer Institute. https://doi.org/10.1093/jnci/djy150 .
Wang, Y., Deng, F., Jia, Y., Wang, J., Zhong, S., Huang, H., Chen, L., Chen, G., Hu, H., Huang, L., & Huang, R. (2019). Disrupted rich club organization and structural brain connectome in unmedicated bipolar disorder. Psychological Medicine, 49(3), 510–518. https://doi.org/10.1017/s0033291718001150 . (PMID: 10.1017/s003329171800115029734951)
Wang, Y. X., King, A. D., Zhou, H., Leung, S. F., Abrigo, J., et al. (2010). Evolution of radiation-induced brain injury: MR imaging-based study. Radiology, 254(1), 210–218. https://doi.org/10.1148/radiol.09090428 . (PMID: 10.1148/radiol.0909042820019142)
Warrington, J. P., Ashpole, N., Csiszar, A., Lee, Y. W., Ungvari, Z., & Sonntag, W. E. (2013). Whole brain radiation-induced vascular cognitive impairment: Mechanisms and implications. Journal of Vascular Research, 50(6), 445–457. https://doi.org/10.1159/000354227 . (PMID: 10.1159/000354227241077974309372)
Wu, L., & Chung, Y. L. (2019). Tumor-infiltrating T cell receptor-beta repertoires are linked to the risk of late chemoradiation-induced temporal lobe necrosis in locally advanced nasopharyngeal carcinoma. International Journal of Radiation Oncology, Biology, Physics. https://doi.org/10.1016/j.ijrobp.2019.01.002 .
Xia, C., Yu, X. Q., Zheng, R., Zhang, S., Zeng, H., Wang, J., Liao, Y., Zou, X., Zuo, T., Yang, Z., & Chen, W. (2017). Spatial and temporal patterns of nasopharyngeal carcinoma mortality in China, 1973-2005. Cancer Letters, 401, 33–38. https://doi.org/10.1016/j.canlet.2017.04.016 . (PMID: 10.1016/j.canlet.2017.04.01628450159)
Xiong, W. F., Qiu, S. J., Wang, H. Z., & Lv, X. F. (2013). 1H-MR spectroscopy and diffusion tensor imaging of normal-appearing temporal white matter in patients with nasopharyngeal carcinoma after irradiation: Initial experience. Journal of Magnetic Resonance Imaging, 37(1), 101–108. https://doi.org/10.1002/jmri.23788 . (PMID: 10.1002/jmri.2378822972703)
Xu, X., Hui, E. S., Mok, M. Y., Jian, J., Lau, C. S., et al. (2017). Structural brain network reorganization in patients with neuropsychiatric systemic lupus erythematosus. AJNR. American Journal of Neuroradiology, 38(1), 64–70. https://doi.org/10.3174/ajnr.A4947 . (PMID: 10.3174/ajnr.A494727633804)
Zalesky, A., Fornito, A., Cocchi, L., Gollo, L. L., van den Heuvel, M. P., et al. (2016). Connectome sensitivity or specificity: Which is more important? Neuroimage, 142, 407–420. https://doi.org/10.1016/j.neuroimage.2016.06.035 . (PMID: 10.1016/j.neuroimage.2016.06.03527364472)
Zalesky, A., Fornito, A., Harding, I. H., Cocchi, L., Yucel, M., et al. (2010). Whole-brain anatomical networks: Does the choice of nodes matter? Neuroimage, 50(3), 970–983. https://doi.org/10.1016/j.neuroimage.2009.12.027 . (PMID: 10.1016/j.neuroimage.2009.12.02720035887)
Zhang, R., Wei, Q., Kang, Z., Zalesky, A., Li, M., et al. (2015). Disrupted brain anatomical connectivity in medication-naïve patients with first-episode schizophrenia. Brain Struct Funct, 220(2), 1145–1159. (PMID: 10.1007/s00429-014-0706-z24449342)
Zhao, L., Tan, X., Wang, J., Han, K., Niu, M., Xu, J., Liu, X., Zhao, X., Zhong, M., Huang, Q., Xu, Y., & Huang, R. (2018). Brain white matter structural networks in patients with non-neuropsychiatric systemic lupus erythematosus. Brain Imaging and Behavior, 12(1), 142–155. https://doi.org/10.1007/s11682-017-9681-3 . (PMID: 10.1007/s11682-017-9681-328190161)
Zhong, S., He, Y., & Gong, G. (2015). Convergence and divergence across construction methods for human brain white matter networks: An assessment based on individual differences. Human Brain Mapping, 36(5), 1995–2013. https://doi.org/10.1002/hbm.22751 . (PMID: 10.1002/hbm.22751256412086869604)
معلومات مُعتمدة: 81871338 National Natural Science Foundation of China; 81371535 National Natural Science Foundation of China; 81271548 National Natural Science Foundation of China; 81401399 National Natural Science Foundation of China; 15ykpy35 Fundamental Research Funds for the Central Universities; A2017620 Medical Scientific Research Foundation of Guangdong Province; 2018YFC1705006 National Key R&D Program of China
فهرسة مساهمة: Keywords: Brain injury; Diffusion tensor imaging (DTI); Graph theory; Nasopharyngeal carcinoma; Radiotherapy; Rich club regions
تواريخ الأحداث: Date Created: 20200105 Date Completed: 20210322 Latest Revision: 20230426
رمز التحديث: 20230426
DOI: 10.1007/s11682-019-00224-2
PMID: 31900892
قاعدة البيانات: MEDLINE
الوصف
تدمد:1931-7565
DOI:10.1007/s11682-019-00224-2