دورية أكاديمية

Distinct cytoskeletal proteins define zones of enhanced cell wall synthesis in Helicobacter pylori .

التفاصيل البيبلوغرافية
العنوان: Distinct cytoskeletal proteins define zones of enhanced cell wall synthesis in Helicobacter pylori .
المؤلفون: Taylor JA; Department of Microbiology, University of Washington, Seattle, United States.; Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, United States., Bratton BP; Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, United States.; Department of Molecular Biology, Princeton University, Princeton, United States., Sichel SR; Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, United States.; Molecular Medicine and Mechanisms of Disease Graduate Program, University of Washington, Seattle, United States., Blair KM; Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, United States.; Molecular and Cellular Biology Graduate Program, University of Washington, Seattle, United States., Jacobs HM; Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, United States.; Molecular and Cellular Biology Graduate Program, University of Washington, Seattle, United States., DeMeester KE; Department of Chemistry and Biochemistry, University of Delaware, Newark, United States., Kuru E; Department of Genetics, Harvard Medical School, Boston, United States., Gray J; Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom., Biboy J; Centre for Bacterial Cell Biology, Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom., VanNieuwenhze MS; Department of Chemistry, Indiana University, Bloomington, United States., Vollmer W; Centre for Bacterial Cell Biology, Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom., Grimes CL; Department of Chemistry and Biochemistry, University of Delaware, Newark, United States.; Department of Biological Sciences, University of Delaware, Newark, United States., Shaevitz JW; Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, United States.; Department of Physics, Princeton University, Princeton, United States., Salama NR; Department of Microbiology, University of Washington, Seattle, United States.; Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, United States.; Molecular Medicine and Mechanisms of Disease Graduate Program, University of Washington, Seattle, United States.; Molecular and Cellular Biology Graduate Program, University of Washington, Seattle, United States.
المصدر: ELife [Elife] 2020 Jan 09; Vol. 9. Date of Electronic Publication: 2020 Jan 09.
نوع المنشور: Journal Article; Research Support, N.I.H., Extramural; Research Support, Non-U.S. Gov't; Research Support, U.S. Gov't, Non-P.H.S.
اللغة: English
بيانات الدورية: Publisher: eLife Sciences Publications, Ltd Country of Publication: England NLM ID: 101579614 Publication Model: Electronic Cited Medium: Internet ISSN: 2050-084X (Electronic) Linking ISSN: 2050084X NLM ISO Abbreviation: Elife Subsets: MEDLINE
أسماء مطبوعة: Original Publication: Cambridge, UK : eLife Sciences Publications, Ltd., 2012-
مواضيع طبية MeSH: Bacterial Outer Membrane Proteins/*metabolism , Bacterial Proteins/*metabolism , Cell Wall/*metabolism , Cytoskeletal Proteins/*metabolism , Helicobacter pylori/*metabolism, Alanine/metabolism ; Helicobacter pylori/cytology ; Muramic Acids/metabolism ; Peptidoglycan/biosynthesis
مستخلص: Helical cell shape is necessary for efficient stomach colonization by Helicobacter pylori , but the molecular mechanisms for generating helical shape remain unclear. The helical centerline pitch and radius of wild-type H. pylori cells dictate surface curvatures of considerably higher positive and negative Gaussian curvatures than those present in straight- or curved-rod H. pylori . Quantitative 3D microscopy analysis of short pulses with either N -acetylmuramic acid or D-alanine metabolic probes showed that cell wall growth is enhanced at both sidewall curvature extremes. Immunofluorescence revealed MreB is most abundant at negative Gaussian curvature, while the bactofilin CcmA is most abundant at positive Gaussian curvature. Strains expressing CcmA variants with altered polymerization properties lose helical shape and associated positive Gaussian curvatures. We thus propose a model where CcmA and MreB promote PG synthesis at positive and negative Gaussian curvatures, respectively, and that this patterning is one mechanism necessary for maintaining helical shape.
Competing Interests: JT, BB, SS, KB, HJ, KD, EK, JG, JB, MV, WV, CG, JS, NS No competing interests declared
(© 2020, Taylor et al.)
References: Cell. 2010 May 28;141(5):822-33. (PMID: 20510929)
Cell. 2017 Jan 12;168(1-2):172-185.e15. (PMID: 28086090)
Res Microbiol. 2011 May;162(4):375-81. (PMID: 21320591)
J Bacteriol. 2009 Dec;191(23):7343-52. (PMID: 19801411)
J Bacteriol. 1999 Jun;181(12):3710-5. (PMID: 10368145)
Mol Microbiol. 2016 Jan;99(1):88-110. (PMID: 26365708)
J Bacteriol. 2000 Jul;182(14):3948-54. (PMID: 10869072)
Mol Microbiol. 2013 Nov;90(4):869-83. (PMID: 24112477)
PLoS Pathog. 2012;8(3):e1002603. (PMID: 22457625)
Nucleic Acids Res. 2008 Dec;36(21):6893-906. (PMID: 18978016)
Sci Adv. 2015 Dec 04;1(11):e1501087. (PMID: 26665178)
Elife. 2020 Jan 09;9:. (PMID: 31916938)
Infect Immun. 2005 Feb;73(2):803-11. (PMID: 15664919)
Biophys J. 2016 Sep 6;111(5):1035-43. (PMID: 27602731)
Elife. 2019 Feb 18;8:. (PMID: 30775967)
Mol Biotechnol. 1995 Apr;3(2):93-9. (PMID: 7620981)
Nature. 2014 Feb 27;506(7489):507-10. (PMID: 24336210)
Mol Microbiol. 2017 Dec;106(6):847-860. (PMID: 28975672)
J Bacteriol. 2019 Jun 21;201(14):. (PMID: 31036730)
PLoS One. 2019 Jun 24;14(6):e0218474. (PMID: 31233532)
EMBO J. 2009 May 6;28(9):1208-19. (PMID: 19279668)
Microbiol Mol Biol Rev. 1998 Mar;62(1):181-203. (PMID: 9529891)
J Bacteriol. 2009 Dec;191(23):7147-56. (PMID: 19767432)
Proc Natl Acad Sci U S A. 2015 Oct 6;112(40):12510-5. (PMID: 26396257)
Proc Natl Acad Sci U S A. 2015 Jan 13;112(2):E127-36. (PMID: 25550503)
Helicobacter. 2006 Oct;11(5):477-93. (PMID: 16961811)
EMBO J. 2010 Jan 20;29(2):327-39. (PMID: 19959992)
Nat Methods. 2012 Jun 28;9(7):676-82. (PMID: 22743772)
Cell. 2005 Feb 11;120(3):329-41. (PMID: 15707892)
Nature. 1997 Aug 7;388(6642):539-47. (PMID: 9252185)
FEMS Microbiol Rev. 2008 Mar;32(2):234-58. (PMID: 18266856)
Cancer Res. 1988 Jul 1;48(13):3554-60. (PMID: 3288329)
Mol Microbiol. 1998 Apr;28(2):383-93. (PMID: 9622362)
J Bacteriol. 2007 Oct;189(20):7450-63. (PMID: 17704222)
Elife. 2018 Feb 22;7:. (PMID: 29469806)
J Bacteriol. 2009 Jan;191(2):494-505. (PMID: 18996994)
Nat Commun. 2017 Apr 20;8:15015. (PMID: 28425464)
J Bacteriol. 2011 Sep;193(17):4523-30. (PMID: 21642462)
ACS Chem Biol. 2013 Mar 15;8(3):500-5. (PMID: 23240806)
Nat Chem Biol. 2013 Aug;9(8):491-3. (PMID: 23831760)
PLoS Pathog. 2009 Nov;5(11):e1000669. (PMID: 19936218)
Annu Rev Microbiol. 1991;45:37-67. (PMID: 1741619)
Nat Rev Microbiol. 2011 Dec 28;10(2):123-36. (PMID: 22203377)
Nat Commun. 2018 Jul 18;9(1):2797. (PMID: 30022070)
Mol Microbiol. 2018 Oct;110(1):114-127. (PMID: 30039535)
Proc Natl Acad Sci U S A. 2014 Mar 18;111(11):E1025-34. (PMID: 24550515)
Angew Chem Int Ed Engl. 2012 Dec 7;51(50):12519-23. (PMID: 23055266)
Nature. 2016 Sep 29;537(7622):634-638. (PMID: 27525505)
Mol Microbiol. 2018 Apr;108(1):77-89. (PMID: 29363884)
J Microbiol Methods. 2012 Jul;90(1):60-4. (PMID: 22504230)
Mol Microbiol. 2010 Nov;78(4):809-19. (PMID: 20815828)
Microbes Infect. 2000 Jan;2(1):55-60. (PMID: 10717541)
Nat Methods. 2009 May;6(5):343-5. (PMID: 19363495)
معلومات مُعتمدة: T32 GM095421 United States GM NIGMS NIH HHS; T32 GM008550 United States GM NIGMS NIH HHS; T32 GM008550 United States NH NIH HHS; DGE-0718124 National Science Foundation; U01 CA221230 United States NH NIH HHS; T32 GM95421 United States NH NIH HHS; R01 AI136946 United States AI NIAID NIH HHS; PHY-1734030 National Science Foundation; T32 CA009657 United States CA NCI NIH HHS; R01 AI136946 United States NH NIH HHS; P30 CA015704 United States NH NIH HHS; R21 AI121828 United States AI NIAID NIH HHS; R21 AI121828 United States NH NIH HHS; P30 CA015704 United States CA NCI NIH HHS; U01 CA221230 United States CA NCI NIH HHS; T32 CA009657 United States NH NIH HHS; DGE-1256082 National Science Foundation; United Kingdom WT_ Wellcome Trust; R01 GM113172 United States GM NIGMS NIH HHS; 101824/Z/13/Z Wellcome
فهرسة مساهمة: Keywords: Helicobacter pylori; MreB; bactofilin; cell shape; infectious disease; microbiology; peptidoglycan
Local Abstract: [plain-language-summary] Round spheres, straight rods, and twisting corkscrews, bacteria come in many different shapes. The shape of bacteria is dictated by their cell wall, the strong outer barrier of the cell. As bacteria grow and multiply, they must add to their cell wall while keeping the same basic shape. The cells walls are made from long chain-like molecules via processes that are guided by protein scaffolds within the cell. Many common antibiotics, including penicillin, stop bacterial infections by interrupting the growth of cell walls. Helicobacter pylori is a common bacterium that lives in the gut and, after many years, can cause stomach ulcers and stomach cancer. H. pylori are shaped in a twisting helix, much like a corkscrew. This shape helps H. pylori to take hold and colonize the stomach. It remains unclear how H. pylori creates and maintains its helical shape. The helix is much more curved than other bacteria, and H. pylori does not have the same helpful proteins that other curved bacteria do. If H. pylori grows asymmetrically, adding more material to the cell wall on its long outer side to create a twisting helix, what controls the process? To find out, Taylor et al. grew H. pylori cells and watched how the cell walls took shape. First, a fluorescent dye was attached to the building blocks of the cell wall or to underlying proteins that were thought to help direct its growth. The cells were then imaged in 3D, and images from hundreds of cells were reconstructed to analyze the growth patterns of the bacteria’s cell wall. A protein called CcmA was found most often on the long side of the twisting H. pylori . When the CcmA protein was isolated in a dish, it spontaneously formed sheets and helical bundles, confirming its role as a structural scaffold for the cell wall. When CcmA was absent from the cell of H. pylori, Taylor et al. observed that the pattern of cell growth changed substantially. This work identifies a key component directing the growth of the cell wall of H. pylori and therefore, a new target for antibiotics. Its helical shape is essential for H. pylori to infect the gut, so blocking the action of the CcmA protein may interrupt cell wall growth and prevent stomach infections.
المشرفين على المادة: 0 (Bacterial Outer Membrane Proteins)
0 (Bacterial Proteins)
0 (CcmA protein, bacteria)
0 (Cytoskeletal Proteins)
0 (Muramic Acids)
0 (Peptidoglycan)
246FXU111L (N-acetylmuramic acid)
OF5P57N2ZX (Alanine)
تواريخ الأحداث: Date Created: 20200110 Date Completed: 20210503 Latest Revision: 20210503
رمز التحديث: 20231215
مُعرف محوري في PubMed: PMC7012605
DOI: 10.7554/eLife.52482
PMID: 31916938
قاعدة البيانات: MEDLINE
الوصف
تدمد:2050-084X
DOI:10.7554/eLife.52482