دورية أكاديمية

Multi-contact 4C: long-molecule sequencing of complex proximity ligation products to uncover local cooperative and competitive chromatin topologies.

التفاصيل البيبلوغرافية
العنوان: Multi-contact 4C: long-molecule sequencing of complex proximity ligation products to uncover local cooperative and competitive chromatin topologies.
المؤلفون: Vermeulen C; Oncode Institute, Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, the Netherlands., Allahyar A; Oncode Institute, Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, the Netherlands., Bouwman BAM; Oncode Institute, Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, the Netherlands., Krijger PHL; Oncode Institute, Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, the Netherlands., Verstegen MJAM; Oncode Institute, Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, the Netherlands., Geeven G; Oncode Institute, Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, the Netherlands., Valdes-Quezada C; Oncode Institute, Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, the Netherlands., Renkens I; Oncode Institute, Center for Molecular Medicine, University Medical Center, Utrecht University, Utrecht, the Netherlands., Straver R; Oncode Institute, Center for Molecular Medicine, University Medical Center, Utrecht University, Utrecht, the Netherlands., Kloosterman WP; Oncode Institute, Center for Molecular Medicine, University Medical Center, Utrecht University, Utrecht, the Netherlands., de Ridder J; Oncode Institute, Center for Molecular Medicine, University Medical Center, Utrecht University, Utrecht, the Netherlands. j.deridder-4@umcutrecht.nl., de Laat W; Oncode Institute, Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, the Netherlands. w.delaat@hubrecht.eu.
المصدر: Nature protocols [Nat Protoc] 2020 Feb; Vol. 15 (2), pp. 364-397. Date of Electronic Publication: 2020 Jan 13.
نوع المنشور: Journal Article; Research Support, N.I.H., Extramural; Research Support, Non-U.S. Gov't
اللغة: English
بيانات الدورية: Publisher: Nature Pub. Group Country of Publication: England NLM ID: 101284307 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1750-2799 (Electronic) Linking ISSN: 17502799 NLM ISO Abbreviation: Nat Protoc Subsets: MEDLINE
أسماء مطبوعة: Original Publication: London, UK : Nature Pub. Group, 2006-
مواضيع طبية MeSH: Chromatin/*chemistry , Chromatin/*genetics , Sequence Analysis, DNA/*methods, Humans ; K562 Cells ; Molecular Conformation
مستخلص: We present the experimental protocol and data analysis toolbox for multi-contact 4C (MC-4C), a new proximity ligation method tailored to study the higher-order chromatin contact patterns of selected genomic sites. Conventional chromatin conformation capture (3C) methods fragment proximity ligation products for efficient analysis of pairwise DNA contacts. By contrast, MC-4C is designed to preserve and collect large concatemers of proximity ligated fragments for long-molecule sequencing on an Oxford Nanopore or Pacific Biosciences platform. Each concatemer of proximity ligation products represents a snapshot topology of a different individual allele, revealing its multi-way chromatin interactions. By inverse PCR with primers specific for a fragment of interest (the viewpoint) and DNA size selection, sequencing is selectively targeted to thousands of different complex interactions containing this viewpoint. A tailored statistical analysis toolbox is able to generate background models and three-way interaction profiles from the same dataset. These profiles can be used to distinguish whether contacts between more than two regulatory sequences are mutually exclusive or, conversely, simultaneously occurring at chromatin hubs. The entire procedure can be completed in 2 w, and requires standard molecular biology and data analysis skills and equipment, plus access to a third-generation sequencing platform.
References: Dekker, J., Rippe, K., Dekker, M. & Kleckner, N. Capturing chromosome conformation. Science 295, 1306–1311 (2002). (PMID: 10.1126/science.1067799)
Denker, A. & de Laat, W. The second decade of 3C technologies: detailed insights into nuclear organization. Genes Dev. 30, 1357–1382 (2016). (PMID: 10.1101/gad.281964.116)
Brant, L. et al. Exploiting native forces to capture chromosome conformation in mammalian cell nuclei. Mol. Syst. Biol. 12, 891 (2016). (PMID: 10.15252/msb.20167311)
Lieberman-Aiden, E. et al. Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science 326, 289–293 (2009). (PMID: 10.1126/science.1181369)
Simonis, M. et al. Nuclear organization of active and inactive chromatin domains uncovered by chromosome conformation capture-on-chip (4C). Nat. Genet. 38, 1348–1354 (2006). (PMID: 10.1038/ng1896)
Splinter, E., de Wit, E., van de Werken, H. J., Klous, P. & de Laat, W. Determining long-range chromatin interactions for selected genomic sites using 4C-seq technology: from fixation to computation. Methods 58, 221–230 (2012). (PMID: 10.1016/j.ymeth.2012.04.009)
Davies, J. O. et al. Multiplexed analysis of chromosome conformation at vastly improved sensitivity. Nat. Methods 13, 74–80 (2016). (PMID: 10.1038/nmeth.3664)
Dostie, J. et al. Chromosome conformation capture carbon copy (5C): a massively parallel solution for mapping interactions between genomic elements. Genome Res. 16, 1299–1309 (2006). (PMID: 10.1101/gr.5571506)
Li, G. et al. ChIA-PET tool for comprehensive chromatin interaction analysis with paired-end tag sequencing. Genome Biol. 11, R22 (2010). (PMID: 10.1186/gb-2010-11-2-r22)
Mumbach, M. R. et al. HiChIP: efficient and sensitive analysis of protein-directed genome architecture. Nat. Methods 13, 919–922 (2016). (PMID: 10.1038/nmeth.3999)
Fullwood, M. J. & Ruan, Y. ChIP-based methods for the identification of long-range chromatin interactions. J. Cell. Biochem. 107, 30–39 (2009). (PMID: 10.1002/jcb.22116)
Dixon, J. R. et al. Topological domains in mammalian genomes identified by analysis of chromatin interactions. Nature 485, 376–380 (2012). (PMID: 10.1038/nature11082)
Nora, E. P. et al. Spatial partitioning of the regulatory landscape of the X-inactivation centre. Nature 485, 381–385 (2012). (PMID: 10.1038/nature11049)
Sexton, T. et al. Three-dimensional folding and functional organization principles of the Drosophila genome. Cell 148, 458–472 (2012). (PMID: 10.1016/j.cell.2012.01.010)
Allahyar, A. et al. Enhancer hubs and loop collisions identified from single-allele topologies. Nat. Genet. 50, 1151–1160 (2018). (PMID: 10.1038/s41588-018-0161-5)
Bianco, S., Chiariello, A. M., Annunziatella, C., Esposito, A. & Nicodemi, M. Predicting chromatin architecture from models of polymer physics. Chromosome Res. 25, 25–34 (2017). (PMID: 10.1007/s10577-016-9545-5)
Serra, F. et al. Automatic analysis and 3D-modelling of Hi-C data using TADbit reveals structural features of the fly chromatin colors. PLoS Comput. Biol. 13, e1005665 (2017). (PMID: 10.1371/journal.pcbi.1005665)
Olivares-Chauvet, P. et al. Capturing pairwise and multi-way chromosomal conformations using chromosomal walks. Nature 540, 296–300 (2016). (PMID: 10.1038/nature20158)
Darrow, E. M. et al. Deletion of DXZ4 on the human inactive X chromosome alters higher-order genome architecture. Proc. Natl Acad. Sci. USA 113, E4504–12 (2016). (PMID: 10.1073/pnas.1609643113)
Quinodoz, S. A. et al. Higher-order inter-chromosomal hubs shape 3D genome organization in the nucleus. Cell 174, 744–757.e24 (2018). (PMID: 10.1016/j.cell.2018.05.024)
Beagrie, R. A. et al. Complex multi-enhancer contacts captured by genome architecture mapping. Nature 543, 519–524 (2017). (PMID: 10.1038/nature21411)
Oudelaar, A. M. et al. Single-allele chromatin interactions identify regulatory hubs in dynamic compartmentalized domains. Nat. Genet. 50, 1744–1751 (2018). (PMID: 10.1038/s41588-018-0253-2)
van de Werken, H. J. et al. 4C technology: protocols and data analysis. Methods Enzymol. 513, 89–112 (2012). (PMID: 10.1016/B978-0-12-391938-0.00004-5)
Li, H. et al. The sequence alignment/map format and SAMtools. Bioinformatics 25, 2078–2079 (2009). (PMID: 10.1093/bioinformatics/btp352)
Li, H. & Durbin, R. Fast and accurate long-read alignment with Burrows–Wheeler transform. Bioinformatics 26, 589–595 (2010). (PMID: 10.1093/bioinformatics/btp698)
Koranne, S. Hierarchical data format 5: HDF5. in Handbook of Open Source Tools 191–200 (Springer, 2011).
Walt, S., van der, van der Walt, S., Chris Colbert, S. & Varoquaux, G. The NumPy array: a structure for efficient numerical computation. Comput. Sci. Eng. 13, 22–30 (2011). (PMID: 10.1109/MCSE.2011.37)
McKinney, W. Python for Data Analysis: Data Wrangling with Pandas, NumPy, and IPython (‘O’Reilly Media, Inc.’, 2017).
Hunter, J. D. Matplotlib: a 2D graphics environment. Comput. Sci. Eng. 9, 90–95 (2007). (PMID: 10.1109/MCSE.2007.55)
Nakayama, T. et al. Cas9-based genome editing in Xenopus tropicalis. Methods Enzymol. 546, 355–375 (2014). (PMID: 10.1016/B978-0-12-801185-0.00017-9)
Koh, C. M. Isolation of genomic DNA from mammalian cells. Methods Enzymol. 529, 161–169 (2013). (PMID: 10.1016/B978-0-12-418687-3.00013-6)
المشرفين على المادة: 0 (Chromatin)
تواريخ الأحداث: Date Created: 20200115 Date Completed: 20200420 Latest Revision: 20220420
رمز التحديث: 20231215
DOI: 10.1038/s41596-019-0242-7
PMID: 31932773
قاعدة البيانات: MEDLINE
الوصف
تدمد:1750-2799
DOI:10.1038/s41596-019-0242-7