دورية أكاديمية

Direct evidence using a controlled greenhouse study for threshold effects of soil organic matter on crop growth.

التفاصيل البيبلوغرافية
العنوان: Direct evidence using a controlled greenhouse study for threshold effects of soil organic matter on crop growth.
المؤلفون: Oldfield EE; School of Forestry and Environmental Studies, Yale University, 370 Prospect Street, New Haven, Connecticut, 06511, USA., Wood SA; School of Forestry and Environmental Studies, Yale University, 370 Prospect Street, New Haven, Connecticut, 06511, USA.; The Nature Conservancy, Arlington, Virginia, 22201, USA., Bradford MA; School of Forestry and Environmental Studies, Yale University, 370 Prospect Street, New Haven, Connecticut, 06511, USA.
المصدر: Ecological applications : a publication of the Ecological Society of America [Ecol Appl] 2020 Jun; Vol. 30 (4), pp. e02073. Date of Electronic Publication: 2020 Feb 21.
نوع المنشور: Journal Article; Research Support, Non-U.S. Gov't
اللغة: English
بيانات الدورية: Publisher: Ecological Society of America Country of Publication: United States NLM ID: 9889808 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1051-0761 (Print) Linking ISSN: 10510761 NLM ISO Abbreviation: Ecol Appl Subsets: MEDLINE
أسماء مطبوعة: Publication: Washington, D.C. : Ecological Society of America
Original Publication: Tempe, AZ : The Society, 1991-
مواضيع طبية MeSH: Agriculture* , Soil*, Biomass ; Carbon ; Fertilizers ; Nitrogen/analysis ; Triticum
مستخلص: Soil organic matter (SOM) is a key indicator of soil fertility, and building SOM is assumed to decrease reliance on external inputs and ensure stable crop production. Recent syntheses of field data support this assumption with positive SOM-productivity relationships that asymptote at ~4% SOM. Teasing out the directionality of this relationship-the extent to which SOM increases crop growth vs. greater growth leading to higher SOM concentrations-requires controlled experimentation. To disentangle this causative pathway, we conducted a greenhouse experiment whereby we manipulated SOM concentrations from 1% to 9% and evaluated whether the SOM-productivity relationship differed for spring wheat (Triticum aestivum, L.) under nitrogen fertilization crossed with irrigation due to the expectation that SOM buffers the effects of reduced fertilization and/or irrigation. We found that higher concentrations of SOM led to greater productivity (measured as aboveground biomass) up to a threshold of 5% SOM, after which productivity declined across all treatments. These declines occurred despite the fact that indicators of soil health (water-holding capacity, microbial biomass, and bulk density) improved linearly with increasing SOM concentrations. That is, improvements in soil properties did not translate to gains in productivity at the highest SOM levels. Nitrogen fertilization led to greater productivity across all treatments, but to a greater relative extent at lower SOM levels, where we found that productivity on unfertilized soils with 4% SOM matched that of fertilized soils with 2% SOM. Differences in productivity on unfertilized soils due to irrigation emerged at higher SOM levels (>5%), highlighting SOM's role in water retention. Our results demonstrate that building SOM leads to improved growth of a globally important crop; however, our results also indicated a pronounced SOM threshold, after which crop growth declined. This underscores the need to develop optimal SOM targets for desired agricultural and environmental outcomes.
(© 2020 by the Ecological Society of America.)
References: Adhikari, K., and A. E. Hartemink. 2016. Linking soils to ecosystem services-a global review. Geoderma 262:101-111.
Allen, S. E. 1989. Chemical analysis of ecological materials, 2nd edition.. Blackwell Scientific, Oxford, UK.
Banwart, S. S., et al. 2014. Benefits of soil carbon: report on the outcomes of an international scientific committee on problems of the environment rapid assessment workshop. Carbon Management 5:185-192.
Bauer, A., and A. L. Black. 1994. Quantification of the effect of soil organic matter content on soil productivity. Soil Science Society of America Journal 58:185.
Berry, P. M., R. S. Bradley, L. Philipps, D. J. Hatch, S. P. Cuttle, F. W. Rayns, and P. Gosling. 2006. Is the productivity of organic farms restricted by the supply of available nitrogen? Soil Use and Management 18:248-255.
Bhardwaj, A. K., P. Jasrotia, S. K. Hamilton, and G. P. Robertson. 2011. Ecological management of intensively cropped agro-ecosystems improves soil quality with sustained productivity. Agriculture, Ecosystems & Environment 140:419-429.
Bradford, M. A., C. A. Davies, S. D. Frey, T. R. Maddox, J. M. Melillo, J. E. Mohan, J. F. Reynolds, K. K. Treseder, and M. D. Wallenstein. 2008. Thermal adaptation of soil microbial respiration to elevated temperature. Ecology Letters 11:1316-1327.
Bradford, M. A., R. L. McCulley, T. W. Crowther, E. E. Oldfield, S. A. Wood, and N. Fierer. 2019. Cross-biome patterns in soil microbial respiration predictable from evolutionary theory on thermal adaptation. Nature Ecology & Evolution 3:223-231.
Bradford, M. A., et al. 2017. A test of the hierarchical model of litter decomposition. Nature Ecology & Evolution 1:1836-1845.
Brady, N. C., and R. R. Weil. 2007. The nature and properties of soils. Fourteenth edition. Prentice Hall. Upper Saddle River, New Jersy, USA.
Bundy, L. G. 1985. Corn fertilization. Publication A3340. University of Wisconsin Cooperative Extension. Madison, Wisconsin, USA.
Bünemann, E. K., et al. 2018. Soil quality-a critical review. Soil Biology & Biochemistry 120:105-125.
Celestina, C., J. R. Hunt, P. W. G. Sale, and A. E. Franks. 2019. Attribution of crop yield responses to application of organic amendments: A critical review. Soil & Tillage Research 186:135-145.
Chabbi, A., et al. 2017. Aligning agriculture and climate policy. Nature Climate Change 7:307-309.
Chenu, C., D. A. Angers, P. Barré, D. Derrien, D. Arrouays, and J. Balesdent. 2019. Increasing organic stocks in agricultural soils: Knowledge gaps and potential innovations. Soil & Tillage Research 188:41-52.
Cotrufo, M. F., M. D. Wallenstein, C. M. Boot, K. Denef, and E. Paul. 2013. The Microbial Efficiency-Matrix Stabilization (MEMS) framework integrates plant litter decomposition with soil organic matter stabilization: do labile plant inputs form stable soil organic matter? Global Change Biology 19:988-995.
Edmeades, D. C. 2003. The long-term effects of manures and fertilisers on soil productivity and quality: a review. Nutrient Cycling in Agroecosystems 66:165-180.
FAO. 2008. Underpinning conservation agriculture's benefits: the roots of soil health and function. fao.org. Food and Agriculture Organization of the United Nations, Rome, Italy.
Fierer, N., and J. P. Schimel. 2003. A proposed mechanism for the pulse in carbon dioxide production commonly observed following the rapid rewetting of a dry soil. Soil Science Society of America Journal 67:798-805.
Foley, J. A., et al. 2011. Solutions for a cultivated planet. Nature 478:337-342.
Fraterrigo, J. M., M. G. Turner, S. M. Pearson, and P. Dixon. 2005. Effects of past land use on spatial heterogeneity of soil nutrients in southern Appalachian forests. Ecological Monographs 75:215-230.
Gelman, A., and J. Hill. 2006. Data analysis using regression and multilevel/hierarchical models. Cambridge University Press, Cambridge, UK.
Goodale, C. L., and J. D. Aber. 2001. The long-term effects of land-use history on nitrogen cycling in northern hardwood forests. Ecological Applications 11:253-267.
Hart, S. C., G. E. Nason, D. D. Myrold, and D. A. Perry. 1994. Dynamics of gross nitrogen transformations in an old-growth forest: the carbon connection. Ecology 75:880-891.
Herrick, J. E. 2000. Soil quality: an indicator of sustainable land management? Applied Soil Ecology 15:75-83.
Hijbeek, R., M. K. van Ittersum, H. F. M. ten Berge, G. Gort, H. Spiegel, and A. P. Whitmore. 2017. Do organic inputs matter-a meta-analysis of additional yield effects for arable crops in Europe. Plant and Soil 411:293-303.
Hobbs, N. T., H. Andrén, J. Persson, M. Aronsson, and G. Chapron. 2012. Native predators reduce harvest of reindeer by Sámi pastoralists. Ecological Applications 22:1640-1654.
Johnston, A. E., P. R. Poulton, and K. Coleman. 2009. Soil organic matter: its importance in sustainable agriculture and carbon dioxide fluxes. Advances zzin Agronomy 101:1-57.
Keiser, A. D., J. D. Knoepp, and M. A. Bradford. 2016. Disturbance decouples biogeochemical cycles across forests of the Southeastern US. Ecosystems 19:50-61.
Kline, R. B. 2012. Assumptions in structural equation modeling. Pages 111-125 in R. Hoyle, editor. Handbook of structural equation modeling. Guilford Press, New York, New York, USA.
Kong, A. Y. Y., J. Six, D. C. Bryant, R. F. Denison, and C. van Kessel. 2005. The Relationship between Carbon Input, Aggregation, and Soil Organic Carbon Stabilization in Sustainable Cropping Systems. Soil Science Society of America Journal 69:1078.
Kosina, P., M. Reynolds, J. Dixon, and A. Joshi. 2007. Stakeholder perception of wheat production constraints, capacity building needs, and research partnerships in developing countries. Euphytica 157:475-483.
Kravchenko, A. N., and D. G. Bullock. 2000. Correlation of corn and soybean grain yield with topography and soil properties. Agronomy Journal 92:75-83.
Loveland, P., and J. Webb. 2003. Is there a critical level of organic matter in the agricultural soils of temperate regions: A review. Soil & Tillage Research 70:1-18.
Minasny, B., et al. 2017. Soil carbon 4 per mille. Geoderma 292:59-86.
Mishra, U., D. A. N. Ussiri, and R. Lal. 2010. Tillage effects on soil organic carbon storage and dynamics in Corn Belt of Ohio USA. Soil and Tillage Research 107:88-96.
Moebius-Clune, B. N., et al. 2016. Comprehensive assessment of soil health-The Cornell framework. Edition 3.2. Cornell University, Geneva, New York, New York, USA.
Nelson, D. W., and L. E. Sommers. 1996. Total carbon, organic carbon, and organic matter. Pages 961--1010 In D. L. Sparks, A. L. Page, P. A. Helmke, R. H. Loeppert, P. N. Soltanpour, M. A. Tabatabai, C. T. Johnston and M. E. Sumner, editors. Methods of soil analysis: chemical methods Part 3. Soil Science Society of America. Madison, Wisconsin, USA.
NRC. 2010. Improving productivity and environmental sustainability in U.S. farming systems Pages 1--29. In Understanding agricultural sustainability. National Academies Press, Washington, D.C., USA.
NRCS. 2012. Farming in the 21st century: a practical approach to improve soil health. USDA, Natural Resources Conservation Service, Washington, D.C., USA.
Oelofse, M., B. Markussen, L. Knudsen, K. Schelde, J. E. Olesen, L. S. Jensen, and S. Bruun. 2015. Do soil organic carbon levels affect potential yields and nitrogen use efficiency? An analysis of winter wheat and spring barley field trials. European Journal of Agronomy 66:62-73.
Oldfield, E. E., S. A. Wood, C. A. Palm, and M. A. Bradford. 2015. How much SOM is needed for sustainable agriculture? Frontiers in Ecology and the Environment 13:527-527.
Oldfield, E. E., S. A. Wood, and M. A. Bradford. 2017. Direct effects of soil organic matter on productivity mirror those observed with organic amendments. Plant and Soil 348:1-11.
Oldfield, E. E., M. A. Bradford, and S. A. Wood. 2019. Global meta-analysis of the relationship between soil organic matter and crop yields. Soil 5:15-32.
Pan, G., P. Smith, and W. Pan. 2009. The role of soil organic matter in maintaining the productivity and yield stability of cereals in China. Agriculture, Ecosystems & Environment 129:344-348.
Pang, X. P., and J. Letey. 2000. Organic farming: Challenge of timing nitrogen availability to crop nitrogen requirements. Soil Science Society of America Journal 64:247-253.
Poorter, H., and M. L. Navas. 2003. Plant growth and competition at elevated CO2: on winners, losers and functional groups. New Phytologist 157:175-198.
Poulton, P., J. Johnston, A. Macdonald, R. White, and D. Powlson. 2018. Major limitations to achieving “4 per 1000” increases in soil organic carbon stock in temperate regions: Evidence from long-term experiments at Rothamsted Research, United Kingdom. Global Change Biology 24:2563-2584.
Powlson, D. S., A. P. Whitmore, and K. W. T. Goulding. 2011. Soil carbon sequestration to mitigate climate change: a critical re-examination to identify the true and the false. European Journal of Soil Science 62:42-55.
R Core Team. 2017. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/.
Robertson, G. P., K. L. Gross, S. K. Hamilton, D. A. Landis, T. M. Schmidt, S. S. Snapp, and S. M. Swinton. 2014. Farming for ecosystem services: An ecological approach to production agriculture. BioScience 64:404-415.
Robertson, G. P., D. Wedin, P. M. Groffmann, J. M. Blair, E. A. Holland, K. J. Nadelhoffer, and D. Harris. 1999. Soil carbon and nitrogen availability: Nitrogen mineralization, nitrification, and soil respiration potentials. Pages 258-271 in Long-term ecological research network series. Oxford University Press, Oxford, UK.
Roper, W. R., D. L. Osmond, J. L. Heitman, M. G. Wagger, and S. C. Reberg-Horton. 2017. Soil health indicators do not differentiate among agronomic management systems in North Carolina Soils. Soil Science Society of America Journal 81:828-16.
Sandaña, P., and D. Pinochet. 2014. Grain yield and phosphorus use efficiency of wheat and pea in a high yielding environment. Journal of Soil Science and Plant Nutrition 14:973-986.
Sanderman, J., T. Hengl, and G. J. Fiske. 2017. Soil carbon debt of 12,000 years of human land use. Proceedings of the National Academy of Sciences of the USA 114:9575-9580.
Seufert, V., N. Ramankutty, and J. A. Foley. 2012. Comparing the yields of organic and conventional agriculture. Nature 485:229-232.
Smith, P.. 2018. Managing the global land resource. Proceedings of the Royal Society B: Biological Sciences 285:20172798.
Sojka, R. E., and D. R. Upchurch. 1999. Reservations regarding the soil quality concept. Soil Science Society of America Journal 63:1039-1054.
Warncke, D., J. Dahl, L. Jacobs, and C. Laboski. 2009. Nutrient recommendations for field crops in Michigan Michigan State University, East Lansing, Michigan, USA.
West, A. W., and G. P. Sparling. 1986. Modifications to the substrate-induced respiration method to permit measurement of microbial biomass in soils of differing water contents. Journal of Microbiological Methods 5:177-189.
Williams, A., and K. Hedlund. 2013. Indicators of soil ecosystem services in conventional and organic arable fields along a gradient of landscape heterogeneity in southern Sweden. Applied Soil Ecology 65:1-7.
Zvomuya, F., H. H. Janzen, F. J. Larney, and B. M. Olson. 2008. A long-term field bioassay of soil quality indicators in a semiarid environment. Soil Science Society of America Journal 72:683.
فهرسة مساهمة: Keywords: crop productivity; soil health; soil organic carbon; soil organic matter; soil quality; sustainable agriculture; sustainable intensification; yield
المشرفين على المادة: 0 (Fertilizers)
0 (Soil)
7440-44-0 (Carbon)
N762921K75 (Nitrogen)
تواريخ الأحداث: Date Created: 20200123 Date Completed: 20201110 Latest Revision: 20201110
رمز التحديث: 20231215
DOI: 10.1002/eap.2073
PMID: 31965653
قاعدة البيانات: MEDLINE
الوصف
تدمد:1051-0761
DOI:10.1002/eap.2073