دورية أكاديمية

Super-resolution microscopy compatible fluorescent probes reveal endogenous glucagon-like peptide-1 receptor distribution and dynamics.

التفاصيل البيبلوغرافية
العنوان: Super-resolution microscopy compatible fluorescent probes reveal endogenous glucagon-like peptide-1 receptor distribution and dynamics.
المؤلفون: Ast J; Institute of Metabolism and Systems Research (IMSR), and Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham, Birmingham, UK.; Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, UK., Arvaniti A; Institute of Metabolism and Systems Research (IMSR), and Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham, Birmingham, UK.; Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, UK., Fine NHF; Institute of Metabolism and Systems Research (IMSR), and Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham, Birmingham, UK.; Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, UK., Nasteska D; Institute of Metabolism and Systems Research (IMSR), and Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham, Birmingham, UK.; Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, UK., Ashford FB; Institute of Metabolism and Systems Research (IMSR), and Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham, Birmingham, UK.; Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, UK., Stamataki Z; Centre for Liver Research, College of Medical and Dental Sciences, Institute for Immunology and Immunotherapy, University of Birmingham, Birmingham, UK., Koszegi Z; Institute of Metabolism and Systems Research (IMSR), and Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham, Birmingham, UK.; Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, UK., Bacon A; Genome Editing Facility, Technology Hub, University of Birmingham, Birmingham, UK., Jones BJ; Division of Diabetes, Endocrinology and Metabolism, Section of Investigative Medicine, Imperial College London, London, UK., Lucey MA; Division of Diabetes, Endocrinology and Metabolism, Section of Investigative Medicine, Imperial College London, London, UK., Sasaki S; Diabetes Research Group, BC Children's Hospital Research Institute, Vancouver, BC, Canada; Department of Surgery, University of British Columbia, Vancouver, BC, Canada., Brierley DI; Centre for Cardiovascular and Metabolic Neuroscience, Department of Neuroscience, Physiology & Pharmacology, University College London, London, UK., Hastoy B; Oxford Centre for Diabetes, Endocrinology & Metabolism, University of Oxford, Oxford, UK., Tomas A; Division of Diabetes, Endocrinology and Metabolism, Section of Cell Biology and Functional Genomics, Imperial College London, London, UK., D'Agostino G; Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester, UK., Reimann F; Wellcome Trust-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK., Lynn FC; Diabetes Research Group, BC Children's Hospital Research Institute, Vancouver, BC, Canada; Department of Surgery, University of British Columbia, Vancouver, BC, Canada., Reissaus CA; Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA., Linnemann AK; Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA., D'Este E; Optical Microscopy Facility, Max Planck Institute for Medical Research, Heidelberg, Germany., Calebiro D; Institute of Metabolism and Systems Research (IMSR), and Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham, Birmingham, UK.; Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, UK., Trapp S; Centre for Cardiovascular and Metabolic Neuroscience, Department of Neuroscience, Physiology & Pharmacology, University College London, London, UK., Johnsson K; Department of Chemical Biology, Max Planck Institute for Medical Research, Heidelberg, Germany., Podewin T; Department of Chemical Biology, Max Planck Institute for Medical Research, Heidelberg, Germany. tom.podewin@mpimf-heidelberg.mpg.de., Broichhagen J; Department of Chemical Biology, Max Planck Institute for Medical Research, Heidelberg, Germany. johannes.broichhagen@mr.mpg.de., Hodson DJ; Institute of Metabolism and Systems Research (IMSR), and Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham, Birmingham, UK. d.hodson@bham.ac.uk.; Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, UK. d.hodson@bham.ac.uk.
المصدر: Nature communications [Nat Commun] 2020 Jan 24; Vol. 11 (1), pp. 467. Date of Electronic Publication: 2020 Jan 24.
نوع المنشور: Journal Article; Research Support, N.I.H., Extramural; Research Support, Non-U.S. Gov't
اللغة: English
بيانات الدورية: Publisher: Nature Pub. Group Country of Publication: England NLM ID: 101528555 Publication Model: Electronic Cited Medium: Internet ISSN: 2041-1723 (Electronic) Linking ISSN: 20411723 NLM ISO Abbreviation: Nat Commun Subsets: MEDLINE
أسماء مطبوعة: Original Publication: [London] : Nature Pub. Group
مواضيع طبية MeSH: Fluorescent Dyes*/chemical synthesis , Fluorescent Dyes*/chemistry, Glucagon-Like Peptide-1 Receptor/*metabolism , Microscopy, Fluorescence, Multiphoton/*methods, Amino Acid Sequence ; Animals ; Brain/metabolism ; Cell Line ; Glucagon-Like Peptide-1 Receptor/antagonists & inhibitors ; Glucagon-Like Peptide-1 Receptor/deficiency ; Glucagon-Like Peptide-1 Receptor/genetics ; HEK293 Cells ; Human Embryonic Stem Cells/metabolism ; Humans ; Islets of Langerhans/metabolism ; Mice ; Mice, Knockout ; Models, Molecular ; Molecular Structure ; Peptide Fragments/chemical synthesis ; Peptide Fragments/chemistry ; Peptide Fragments/genetics ; Signal Transduction ; Tissue Distribution
مستخلص: The glucagon-like peptide-1 receptor (GLP1R) is a class B G protein-coupled receptor (GPCR) involved in metabolism. Presently, its visualization is limited to genetic manipulation, antibody detection or the use of probes that stimulate receptor activation. Herein, we present LUXendin645, a far-red fluorescent GLP1R antagonistic peptide label. LUXendin645 produces intense and specific membrane labeling throughout live and fixed tissue. GLP1R signaling can additionally be evoked when the receptor is allosterically modulated in the presence of LUXendin645. Using LUXendin645 and LUXendin651, we describe islet, brain and hESC-derived β-like cell GLP1R expression patterns, reveal higher-order GLP1R organization including membrane nanodomains, and track single receptor subpopulations. We furthermore show that the LUXendin backbone can be optimized for intravital two-photon imaging by installing a red fluorophore. Thus, our super-resolution compatible labeling probes allow visualization of endogenous GLP1R, and provide insight into class B GPCR distribution and dynamics both in vitro and in vivo.
التعليقات: Erratum in: Nat Commun. 2020 Oct 9;11(1):5160. (PMID: 33037231)
References: Baggio, L. L. & Drucker, D. J. Biology of incretins: GLP-1 and GIP. Gastroenterology 132, 2131–2157 (2007). (PMID: 1749850810.1053/j.gastro.2007.03.054)
Campbell, J. E. & Drucker, D. J. Pharmacology, physiology, and mechanisms of incretin hormone action. Cell Metab. 17, 819–837 (2013). (PMID: 2368462310.1016/j.cmet.2013.04.008)
Gribble, F. M. & Reimann, F. Function and mechanisms of enteroendocrine cells and gut hormones in metabolism. Nat. Rev. Endocrinol. 15, 226–237 (2019). (PMID: 3076084710.1038/s41574-019-0168-8)
Leech, C. A. et al. Molecular physiology of glucagon-like peptide-1 insulin secretagogue action in pancreatic beta cells. Prog. Biophys. Mol. Biol. 107, 236–247 (2011). (PMID: 21782840320049910.1016/j.pbiomolbio.2011.07.005)
MacDonald, P. E. et al. The multiple actions of GLP-1 on the process of glucose-stimulated insulin secretion. Diabetes 51(Suppl. 3), S434–S442 (2002). (PMID: 1247578710.2337/diabetes.51.2007.S434)
Cork, S. C. et al. Distribution and characterisation of glucagon-like peptide-1 receptor expressing cells in the mouse brain. Mol. Metab. 4, 718–731 (2015). (PMID: 26500843458845810.1016/j.molmet.2015.07.008)
Richards, P. et al. Identification and characterization of GLP-1 receptor-expressing cells using a new transgenic mouse model. Diabetes 63, 1224–1233 (2013). (PMID: 2429671210.2337/db13-1440)
Giepmans, B. N., Adams, S. R., Ellisman, M. H. & Tsien, R. Y. The fluorescent toolbox for assessing protein location and function. Science 312, 217–224 (2006). (PMID: 1661420910.1126/science.1124618)
Yang, G. et al. Genetic targeting of chemical indicators in vivo. Nat. Methods 12, 137–139 (2015). (PMID: 2548606110.1038/nmeth.3207)
Lukinavičius, G. et al. A near-infrared fluorophore for live-cell super-resolution microscopy of cellular proteins. Nat. Chem. 5, 132–139 (2013). (PMID: 2334444810.1038/nchem.1546)
Los, G. V. et al. HaloTag: a novel protein labeling technology for cell imaging and protein analysis. ACS Chem. Biol. 3, 373–382 (2008). (PMID: 1853365910.1021/cb800025k)
Lang, K. et al. Genetic encoding of bicyclononynes and trans-cyclooctenes for site-specific protein labeling in vitro and in live mammalian cells via rapid fluorogenic Diels–Alder reactions. J. Am. Chem. Soc. 134, 10317–10320 (2012). (PMID: 22694658368736710.1021/ja302832g)
Jewett, J. C. & Bertozzi, C. R. Cu-free click cycloaddition reactions in chemical biology. Chem. Soc. Rev. 39, 1272–1279 (2010). (PMID: 20349533286525310.1039/b901970g)
Lukinavicius, G. et al. Fluorogenic probes for live-cell imaging of the cytoskeleton. Nat. Methods 11, 731–733 (2014). (PMID: 2485975310.1038/nmeth.2972)
Lukinavicius, G. et al. Fluorogenic probes for multicolor imaging in living cells. J. Am. Chem. Soc. 138, 9365–9368 (2016). (PMID: 2742090710.1021/jacs.6b04782)
Karch, S. et al. A new fluorogenic small-molecule labeling tool for surface diffusion analysis and advanced fluorescence imaging of β-site amyloid precursor protein-cleaving enzyme 1 based on silicone rhodamine: SiR-BACE1. J. Med. Chem. 61, 6121–6139 (2018). (PMID: 2993973710.1021/acs.jmedchem.8b00387)
Pyke, C. & Knudsen, L. B. The glucagon-like peptide-1 receptor—or not? Endocrinology 154, 4–8 (2013). (PMID: 2326705010.1210/en.2012-2124)
Pyke, C. et al. GLP-1 receptor localization in monkey and human tissue: novel distribution revealed with extensively validated monoclonal antibody. Endocrinology 155, 1280–1290 (2014). (PMID: 2446774610.1210/en.2013-1934)
Roed, S. N. et al. Real-time trafficking and signaling of the glucagon-like peptide-1 receptor. Mol. Cell. Endocrinol. 382, 938–949 (2014). (PMID: 2427518110.1016/j.mce.2013.11.010)
Buenaventura, T. et al. Agonist-induced membrane nanodomain clustering drives GLP-1 receptor responses in pancreatic beta cells. PLoS Biol. 17, e3000097 (2019). (PMID: 31430273671678310.1371/journal.pbio.3000097)
Podewin, T. et al. Conditional and reversible activation of class A and B G protein-coupled receptors using tethered pharmacology. ACS Cent. Sci. 4, 166–179 (2018). (PMID: 29532016583299410.1021/acscentsci.7b00237)
Secher, A. et al. The arcuate nucleus mediates GLP-1 receptor agonist liraglutide-dependent weight loss. J. Clin. Invest. 124, 4473–4488 (2014). (PMID: 25202980421519010.1172/JCI75276)
Clardy, S. M. et al. Fluorescent Exendin-4 derivatives for pancreatic β-cell analysis. Bioconjug. Chem. 25, 171–177 (2013). (PMID: 24328216401612610.1021/bc4005014)
Clardy, S. M. et al. Rapid, high efficiency isolation of pancreatic ss-cells. Sci. Rep. 5, 13681 (2015). (PMID: 26330153455703310.1038/srep13681)
Lehtonen, J., Schäffer, L., Rasch, M. G., Hecksher-Sørensen, J. & Ahnfelt-Rønne, J. Beta cell specific probing with fluorescent exendin-4 is progressively reduced in type 2 diabetic mouse models. Islets 7, e1137415 (2016). (PMID: 487826110.1080/19382014.2015.1137415)
Kim, J. et al. Amino acid transporter Slc38a5 controls glucagon receptor inhibition-induced pancreatic α cell hyperplasia in mice. Cell Metab. 25, 1348–1361.e1348 (2017). (PMID: 28591637820695810.1016/j.cmet.2017.05.006)
Kleiner, S. et al. Mice harboring the humanSLC30A8R138X loss-of-function mutation have increased insulin secretory capacity. Proc. Natl Acad. Sci. USA 115, E7642–E7649 (2018). (PMID: 300380246094147)
Aroor, A. & Nistala, R. Tissue-specific expression of GLP1R in mice: is the problem of antibody nonspecificity solved? Diabetes 63, 1182–1184 (2014). (PMID: 2465180010.2337/db13-1937)
Drucker, DanielJ. The cardiovascular biology of glucagon-like peptide-1. Cell Metab. 24, 15–30 (2016). (PMID: 2734542210.1016/j.cmet.2016.06.009)
Armstrong, M. J. et al. Liraglutide safety and efficacy in patients with non-alcoholic steatohepatitis (LEAN): a multicentre, double-blind, randomised, placebo-controlled phase 2 study. Lancet 387, 679–690 (2016). (PMID: 2660825610.1016/S0140-6736(15)00803-X)
Baggio, L. L. & Drucker, D. J. Glucagon-like peptide-1 receptors in the brain: controlling food intake and body weight. J. Clin. Invest. 124, 4223–4226 (2014). (PMID: 25202976419104010.1172/JCI78371)
Mukai, E. et al. GLP-1 receptor antagonist as a potential probe for pancreatic beta-cell imaging. Biochem. Biophys. Res. Commun. 389, 523–526 (2009). (PMID: 1973754010.1016/j.bbrc.2009.09.014)
Jones, B. J. et al. Potent prearranged positive allosteric modulators of the glucagon-like peptide-1 receptor. ChemistryOpen, 6, 501–505 (2017).
Ban, K. et al. Glucagon-like peptide (GLP)-1(9-36)amide-mediated cytoprotection is blocked by exendin(9-39) yet does not require the known GLP-1 receptor. Endocrinology 151, 1520–1531 (2010). (PMID: 2017296610.1210/en.2009-1197)
DiGruccio, M. R. et al. Comprehensive alpha, beta and delta cell transcriptomes reveal that ghrelin selectively activates delta cells and promotes somatostatin release from pancreatic islets. Mol. Metab. 5, 449–458 (2016). (PMID: 27408771492178110.1016/j.molmet.2016.04.007)
De Marinis, Y. Z. et al. GLP-1 inhibits and adrenaline stimulates glucagon release by differential modulation of N- and L-type Ca2+ channel-dependent exocytosis. Cell Metab. 11, 543–553 (2010). (PMID: 20519125431093510.1016/j.cmet.2010.04.007)
Cabrera, O. et al. The unique cytoarchitecture of human pancreatic islets has implications for islet cell function. Proc. Natl Acad. Sci. USA 103, 2334–2339 (2006). (PMID: 16461897141373010.1073/pnas.0510790103)
Gustafsson, N. et al. Fast live-cell conventional fluorophore nanoscopy with ImageJ through super-resolution radial fluctuations. Nat. Commun. 7, 12471 (2016). (PMID: 27514992499064910.1038/ncomms12471)
Calebiro, D. et al. Single-molecule analysis of fluorescently labeled G-protein-coupled receptors reveals complexes with distinct dynamics and organization. Proc. Natl Acad. Sci. USA 110, 743–748 (2013). (PMID: 2326708810.1073/pnas.1205798110)
Sungkaworn, T. et al. Single-molecule imaging reveals receptor-G protein interactions at cell surface hot spots. Nature 550, 543–547 (2017). (PMID: 2904539510.1038/nature24264)
Llewellyn-Smith, I. J., Reimann, F., Gribble, F. M. & Trapp, S. Preproglucagon neurons project widely to autonomic control areas in the mouse brain. Neuroscience 180, 111–121 (2011). (PMID: 2132974310.1016/j.neuroscience.2011.02.023)
Jermendy, A. et al. Rat neonatal beta cells lack the specialised metabolic phenotype of mature beta cells. Diabetologia 54, 594–604 (2011). (PMID: 21240476304508110.1007/s00125-010-2036-x)
Pansare, V., Hejazi, S., Faenza, W. & Prud’homme, R. K. Review of long-wavelength optical and NIR imaging materials: contrast agents, fluorophores and multifunctional nano carriers. Chem. Mater. 24, 812–827 (2012). (PMID: 22919122342322610.1021/cm2028367)
Shen, B.-Q. et al. Conjugation site modulates the in vivo stability and therapeutic activity of antibody-drug conjugates. Nat. Biotechnol. 30, 184–189 (2012). (PMID: 2226701010.1038/nbt.2108)
Scrocchi, L. A. et al. Glucose intolerance but normal satiety in mice with a null mutation in the glucagon-like peptide 1 receptor gene. Nat. Med. 2, 1254–1258 (1996). (PMID: 889875610.1038/nm1196-1254)
Visel, A., Rubin, E. M. & Pennacchio, L. A. Genomic views of distant-acting enhancers. Nature 461, 199–205 (2009). (PMID: 19741700292322110.1038/nature08451)
Filios, S. R. & Shalev, A. β-cell microRNAs: small but powerful. Diabetes 64, 3631–3644 (2015). (PMID: 26494215461398210.2337/db15-0831)
Akerman, I. et al. Human pancreatic beta cell lncRNAs control cell-specific regulatory networks. Cell Metab. 25, 400–411 (2017). (PMID: 28041957530090410.1016/j.cmet.2016.11.016)
Nauck, M. A. et al. Normalization of fasting hyperglycaemia by exogenous glucagon-like peptide 1 (7-36 amide) in type 2 (non-insulin-dependent) diabetic patients. Diabetologia 36, 741–744 (1993). (PMID: 840574110.1007/BF00401145)
Tornehave, D., Kristensen, P., Romer, J., Knudsen, L. B. & Heller, R. S. Expression of the GLP-1 receptor in mouse, rat, and human pancreas. J. Histochem. Cytochem. 56, 841–851 (2008). (PMID: 18541709251695910.1369/jhc.2008.951319)
Zhang, Y. et al. GLP-1 receptor in pancreatic alpha cells regulates glucagon secretion in a glucose-dependent bidirectional manner. Diabetes, 68, 34–44 (2018).
Botfield, H. F. et al. A glucagon-like peptide-1 receptor agonist reduces intracranial pressure in a rat model of hydrocephalus. Sci. Transl. Med. 9, eaan0972 (2017). (PMID: 2883551510.1126/scitranslmed.aan0972)
Ramracheya, R. et al. GLP-1 suppresses glucagon secretion in human pancreatic alpha-cells by inhibition of P/Q-type Ca2+ channels. Physiol. Rep. 6, e13852 (2018). (PMID: 30187652612524410.14814/phy2.13852)
Naylor, J. et al. Use of CRISPR/Cas9-engineered INS-1 pancreatic beta cells to define the pharmacology of dual GIPR/GLP-1R agonists. Biochem. J. 473, 2881–2891 (2016). (PMID: 2742278410.1042/BCJ20160476)
Reimann, F. et al. Glucose sensing in L cells: a primary cell study. Cell Metab. 8, 532–539 (2008). (PMID: 19041768269733110.1016/j.cmet.2008.11.002)
Everett, K. L. & Cooper, D. M. An improved targeted cAMP sensor to study the regulation of adenylyl cyclase 8 by Ca2+ entry through voltage-gated channels. PLoS ONE 8, e75942 (2013). (PMID: 24086669378108510.1371/journal.pone.0075942)
Zimmer, C. et al. Statistical analysis of 3D images detects regular spatial distributions of centromeres and chromocenters in animal and plant nuclei. PLoS Comput. Biol. 6, e1000853 (2010). (PMID: 10.1371/journal.pcbi.1000853)
Jaqaman, K. et al. Robust single-particle tracking in live-cell time-lapse sequences. Nat. Methods 5, 695–702 (2008). (PMID: 18641657274760410.1038/nmeth.1237)
Lanoiselée, Y., Sikora, G., Grzesiek, A., Grebenkov, D. S., Wyłomańska, A. Optimal parameters for anomalous-diffusion-exponent estimation from noisy data. Phys. Rev. E 98, 062139 (2018).
Ertürk, A. et al. Three-dimensional imaging of solvent-cleared organs using 3DISCO. Nat. Protoc. 7, 1983–1995 (2012). (PMID: 2306024310.1038/nprot.2012.119)
Nair, G. G. et al. Recapitulating endocrine cell clustering in culture promotes maturation of human stem-cell-derived β cells. Nat. Cell Biol. 21, 263–274 (2019). (PMID: 30710150674642710.1038/s41556-018-0271-4)
Zhang, Y. et al. Cryo-EM structure of the activated GLP-1 receptor in complex with a G protein. Nature 546, 248–253 (2017). (PMID: 28538729558741510.1038/nature22394)
معلومات مُعتمدة: MR/S025618/1 United Kingdom MRC_ Medical Research Council; MR/N02589X/1 United Kingdom MRC_ Medical Research Council; MR/P009824/2 United Kingdom MRC_ Medical Research Council; MR/R010676/1 United Kingdom MRC_ Medical Research Council; United Kingdom WT_ Wellcome Trust; R01 DK095757 United States DK NIDDK NIH HHS; MR/K023667/1 United Kingdom MRC_ Medical Research Council; MC_UU_12012/3 United Kingdom MRC_ Medical Research Council; MC_UU_00014/3 United Kingdom MRC_ Medical Research Council; T32 DK064466 United States DK NIDDK NIH HHS; U24 DK104162 United States DK NIDDK NIH HHS; MR/N00275X/1 United Kingdom MRC_ Medical Research Council; P30 DK097512 United States DK NIDDK NIH HHS; MR/P009824/1 United Kingdom MRC_ Medical Research Council; MC_UU_00014/5 United Kingdom MRC_ Medical Research Council; U01 DK104162 United States DK NIDDK NIH HHS; R03 DK115990 United States DK NIDDK NIH HHS
المشرفين على المادة: 0 (Fluorescent Dyes)
0 (GLP1R protein, human)
0 (Glp1r protein, mouse)
0 (Glucagon-Like Peptide-1 Receptor)
0 (Peptide Fragments)
5313W10MYT (exendin (9-39))
تواريخ الأحداث: Date Created: 20200126 Date Completed: 20200413 Latest Revision: 20220417
رمز التحديث: 20240628
مُعرف محوري في PubMed: PMC6981144
DOI: 10.1038/s41467-020-14309-w
PMID: 31980626
قاعدة البيانات: MEDLINE
الوصف
تدمد:2041-1723
DOI:10.1038/s41467-020-14309-w