دورية أكاديمية

The biogeography of thermal risk for terrestrial ectotherms: Scaling of thermal tolerance with body size and latitude.

التفاصيل البيبلوغرافية
العنوان: The biogeography of thermal risk for terrestrial ectotherms: Scaling of thermal tolerance with body size and latitude.
المؤلفون: Rubalcaba JG; Department of Biology and Geology, Physics and Inorganic Chemistry, ESCET, Universidad Rey Juan Carlos, Móstoles, Madrid, Spain., Olalla-Tárraga MÁ; Department of Biology and Geology, Physics and Inorganic Chemistry, ESCET, Universidad Rey Juan Carlos, Móstoles, Madrid, Spain.
المصدر: The Journal of animal ecology [J Anim Ecol] 2020 May; Vol. 89 (5), pp. 1277-1285. Date of Electronic Publication: 2020 Feb 28.
نوع المنشور: Journal Article; Research Support, Non-U.S. Gov't
اللغة: English
بيانات الدورية: Publisher: Blackwell Country of Publication: England NLM ID: 0376574 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1365-2656 (Electronic) Linking ISSN: 00218790 NLM ISO Abbreviation: J Anim Ecol Subsets: MEDLINE
أسماء مطبوعة: Publication: Oxford : Blackwell
Original Publication: Oxford, British Ecological Society.
مواضيع طبية MeSH: Lizards*, Animals ; Body Size ; Geography ; Phylogeny ; Temperature
مستخلص: Many organisms are shrinking in size in response to global warming. However, we still lack a comprehensive understanding of the mechanisms linking body size and temperature of organisms across their geographical ranges. Here we investigate the biophysical mechanisms determining the scaling of body temperature with size across latitudes in terrestrial ectotherms. Using biophysical models, we simulated operative temperatures experienced by lizard-like ectotherms as a function of microclimatic variables, body mass and latitude and used them to generate null predictions for the effect of size on temperature across geographical gradients. We then compared model predictions against empirical data on lizards' field body temperature (T b ) and thermal tolerance limits (CT max and CT min ). Our biophysical models predict that the allometric scaling of operative temperatures with body size varies with latitude, with a positive relationship at low latitudes that vanishes with increasing latitude. The analyses of thermal traits of lizards show a significant interaction of body size and latitude on T b and CT max and no effect of body mass on CT min , consistent with model's predictions. The estimated scaling coefficients are within the ranges predicted by the biophysical model. The effect of body mass, however, becomes non-significant after controlling for the phylogenetic relatedness between species. We propose that large-bodied terrestrial ectotherms exhibit higher risk of overheating at low latitudes, while size differences in thermal sensitivity vanish towards higher latitudes. Our work highlights the potential of combining mechanistic models with empirical data to investigate the mechanisms underpinning broad-scale patterns and ultimately provide a null model to develop baseline expectations for further empirical research.
(© 2020 British Ecological Society.)
References: Angilletta, M. J. Jr, & Dunham, A. E. (2003). The temperature-size rule in ectotherms: Simple evolutionary explanations may not be general. The American Naturalist, 162, 332-342. https://doi.org/10.1086/377187.
Bakken, G. S. (1992). Measurement and application of operative and standard operative temperatures in ecology. American Zoologist, 32, 194-216. https://doi.org/10.1093/icb/32.2.194.
Bakken, G. S., & Gates, D. M. (1975). Heat-transfer analysis of animals: Some implications for field ecology, physiology, and evolution. In D. M. Gates & R. B. Schmerl (Eds.), Perspectives of biophysical ecology (pp. 255-290). Berlin, Heidelberg: Springer.
Baudier, K. M., Mudd, A. E., Erickson, S. C., & O'Donnell, S. (2015). Microhabitat and body size effects on heat tolerance: Implications for responses to climate change (army ants: Formicidae, Ecitoninae). Journal of Animal Ecology, 84, 1322-1330. https://doi.org/10.1111/1365-2656.12388.
Bennett, J. M., Calosi, P., Clusella-Trullas, S., Martínez, B., Sunday, J., Algar, A. C., … Morales-Castilla, I. (2018). GlobTherm, a global database on thermal tolerances for aquatic and terrestrial organisms. Scientific Data, 5, 180022. https://doi.org/10.1038/sdata.2018.22.
Buckley, L. B., Ehrenberger, J. C., & Angilletta, M. J. (2015). Thermoregulatory behaviour limits local adaptation of thermal niches and confers sensitivity to climate change. Functional Ecology, 29, 1038-1047. https://doi.org/10.1111/1365-2435.12406.
Clusella-Trullas, S., Blackburn, T. M., & Chown, S. L. (2011). Climatic predictors of temperature performance curve parameters in ectotherms imply complex responses to climate change. The American Naturalist, 177, 738-751. https://doi.org/10.1086/660021.
Clusella-Trullas, S., & Chown, S. L. (2014). Lizard thermal trait variation at multiple scales: A review. Journal of Comparative Physiology B, 184, 5-21. https://doi.org/10.1007/s00360-013-0776-x.
Daufresne, M., Lengfellner, K., & Sommer, U. (2009). Global warming benefits the small in aquatic ecosystems. Proceedings of the National Academy of Sciences of the United States of America, 106, 12788-12793. https://doi.org/10.1073/pnas.0902080106.
Deutsch, C. A., Tewksbury, J. J., Huey, R. B., Sheldon, K. S., Ghalambor, C. K., Haak, D. C., & Martin, P. R. (2008). Impacts of climate warming on terrestrial ectotherms across latitude. Proceedings of the National Academy of Sciences of the United States of America, 105, 6668-6672. https://doi.org/10.1073/pnas.0709472105.
Fei, T., Skidmore, A. K., Venus, V., Wang, T., Schlerf, M., Toxopeus, B., … Liu, Y. (2012). A body temperature model for lizards as estimated from the thermal environment. Journal of Thermal Biology, 37, 56-64. https://doi.org/10.1016/j.jtherbio.2011.10.013.
Franken, O., Huizinga, M., Ellers, J., & Berg, M. (2018). Heated communities: Large inter- and intraspecific variation in heat tolerance across trophic levels of a soil arthropod community. Oecologia, 186, 311-322. https://doi.org/10.1007/s00442-017-4032-z.
Gardner, J. L., Peters, A., Kearney, M. R., Joseph, L., & Heinsohn, R. (2011). Declining body size: A third universal response to warming? Trends in Ecology & Evolution, 26, 285-291. https://doi.org/10.1016/j.tree.2011.03.005.
Gienapp, P., Teplitsky, C., Alho, J. S., Mills, J. A., & Merilä, J. (2008). Climate change and evolution: Disentangling environmental and genetic responses. Molecular Ecology, 17, 167-178. https://doi.org/10.1111/j.1365-294X.2007.03413.x.
Ho, L. S. T., & Ane, C. (2014). A linear-time algorithm for Gaussian and non-Gaussian trait evolution models. Systematic Biology, 63, 397-408. https://doi.org/10.1093/sysbio/syu005.
Huey, R. B., Kearney, M. R., Krockenberger, A., Holtum, J. A., Jess, M., & Williams, S. E. (2012). Predicting organismal vulnerability to climate warming: Roles of behaviour, physiology and adaptation. Philosophical Transactions of the Royal Society B: Biological Sciences, 367, 1665-1679.
Kaspari, M., Clay, N. A., Lucas, J., Yanoviak, S. P., & Kay, A. (2015). Thermal adaptation generates a diversity of thermal limits in a rainforest ant community. Global Change Biology, 21, 1092-1102. https://doi.org/10.1111/gcb.12750.
Kaspari, M., & Weiser, M. D. (1999). The size-grain hypothesis and interspecific scaling in ants. Functional Ecology, 13, 530-538. https://doi.org/10.1046/j.1365-2435.1999.00343.x.
Kearney, M. R., & Porter, W. P. (2017). NicheMapR-an R package for biophysical modelling: The microclimate model. Ecography, 40, 664-674. https://doi.org/10.1111/ecog.02360.
Kearney, M., Shine, R., & Porter, W. P. (2009). The potential for behavioral thermoregulation to buffer “cold-blooded” animals against climate warming. Proceedings of the National Academy of Sciences of the United States of America, 106, 3835-3840. https://doi.org/10.1073/pnas.0808913106.
Kingsolver, J. G., Diamond, S. E., & Buckley, L. B. (2013). Heat stress and the fitness consequences of climate change for terrestrial ectotherms. Functional Ecology, 27, 1415-1423. https://doi.org/10.1111/1365-2435.12145.
Kingsolver, J. G., & Huey, R. B. (2008). Size, temperature, and fitness: Three rules. Evolutionary Ecology Research, 10, 251-268.
Kovacevic, A., Latombe, G., & Chown, S. L. (2019). Rate dynamics of ectotherm responses to thermal stress. Proceedings of the Royal Society B: Biological Sciences, 286(1902), 20190174-https://doi.org/10.1098/rspb.2019.0174.
Kozłowski, J., Czarnołęski, M., & Dańko, M. (2004). Can optimal resource allocation models explain why ectotherms grow larger in cold? Integrative and Comparative Biology, 44, 480-493. https://doi.org/10.1093/icb/44.6.480.
Leiva, F. P., Calosi, P., & Verberk, W. C. (2019). Scaling of thermal tolerance with body mass and genome size in ectotherms: A comparison between water- and air-breathers. Philosophical Transactions of the Royal Society B: Biological Sciences, 374(1778), 20190035. https://doi.org/10.1098/rstb.2019.0035.
Lindmark, M., Huss, M., Ohlberger, J., & Gårdmark, A. (2018). Temperature-dependent body size effects determine population responses to climate warming. Ecology Letters, 21, 181-189. https://doi.org/10.1111/ele.12880.
Mautz, W. (1980). Factors influencing evaporative water loss in lizards. Comparative Biochemistry and Physiology, 67A, 429-437. https://doi.org/10.1016/S0300-9629(80)80019-3.
Meiri, S. (2010). Length-weight allometries in lizards. Journal of Zoology, 281, 218-226. https://doi.org/10.1111/j.1469-7998.2010.00696.x.
Meiri, S. (2018). Traits of lizards of the world: Variation around a successful evolutionary design. Global Ecology and Biogeography, 27, 1168-1172. https://doi.org/10.1111/geb.12773.
Meiri, S., Bauer, A. M., Chirio, L., Colli, G. R., Das, I., Doan, T. M., … Van Damme, R. (2013). Are lizards feeling the heat? A tale of ecology and evolution under two temperatures. Global Ecology and Biogeography, 22, 834-845. https://doi.org/10.1111/geb.12053.
Muñoz, M. M., Langham, G. M., Brandley, M. C., Rosauer, D. F., Williams, S. E., & Moritz, C. (2016). Basking behavior predicts the evolution of heat tolerance in Australian rainforest lizards. Evolution, 70, 2537-2549. https://doi.org/10.1111/evo.13064.
Ohlberger, J. (2013). Climate warming and ectotherm body size-from individual physiology to community ecology. Functional Ecology, 27, 991-1001. https://doi.org/10.1111/1365-2435.12098.
Olalla-Tárraga, M. Á., Rodríguez, M. Á., & Hawkins, B. A. (2006). Broad-scale patterns of body size in squamate reptiles of Europe and North America. Journal of Biogeography, 33, 781-793. https://doi.org/10.1111/j.1365-2699.2006.01435.x.
Peck, L. S., Clark, M. S., Morley, S. A., Massey, A., & Rossetti, H. (2009). Animal temperature limits and ecological relevance: Effects of size, activity and rates of change. Functional Ecology, 23, 248-256. https://doi.org/10.1111/j.1365-2435.2008.01537.x.
Phillips, B. L., Munoz, M. M., Hatcher, A., Macdonald, S. L., Llewelyn, J., Lucy, V., & Moritz, C. (2016). Heat hardening in a tropical lizard: Geographic variation explained by the predictability and variance in environmental temperatures. Functional Ecology, 30, 1161-1168.
Pörtner, H. O. (2001). Climate change and temperature-dependent biogeography: Oxygen limitation of thermal tolerance in animals. Naturwissenschaften, 88, 137-146. https://doi.org/10.1007/s001140100216.
Porter, W. P., & Kearney, M. (2009). Size, shape, and the thermal niche of endotherms. Proceedings of the National Academy of Sciences, 106, 19666-19672. https://doi.org/10.1073/pnas.0907321106.
Pyron, R. A., Burbrink, F. T., & Wiens, J. J. (2013). A phylogeny and revised classification of Squamata, including 4161 species of lizards and snakes. BMC Evolutionary Biology, 13, 93. https://doi.org/10.1186/1471-2148-13-93.
R Core Team. (2018). R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. Retrieved from https://www.R-project.org/.
Recsetar, M. S., Zeigler, M. P., Ward, D. L., Bonar, S. A., & Caldwell, C. A. (2012). Relationship between fish size and upper thermal tolerance. Transactions of the American Fisheries Society, 141, 1433-1438. https://doi.org/10.1080/00028487.2012.694830.
Revell, L. J. (2012). phytools: An R package for phylogenetic comparative biology (and other things). Methods in Ecology and Evolution, 3, 217-223. https://doi.org/10.1111/j.2041-210X.2011.00169.x.
Ribeiro, P. L., Camacho, A., & Navas, C. A. (2012). Considerations for assessing maximum critical temperatures in small ectothermic animals: Insights from leaf-cutting ants. PLoS ONE, 7, e32083. https://doi.org/10.1371/journal.pone.0032083.
Rubalcaba, J. G., Gouveia, S. F., & Olalla-Tárraga, M. A. (2019). A mechanistic model to scale up biophysical processes into geographical size gradients in ectotherms. Global Ecology and Biogeography, 28, 793-803. https://doi.org/10.1111/geb.12893.
Rubalcaba, J., & Olalla-Tárraga, M. Á. (2020a). Data from: The biogeography of thermal risk for terrestrial ectotherms: Scaling of thermal tolerance with body size and latitude. Zenodo, https://doi.org/10.5281/zenodo.3601548.
Rubalcaba, J., & Olalla-Tárraga, M. Á. (2020b). Data from: The biogeography of thermal risk for terrestrial ectotherms: Scaling of thermal tolerance with body size and latitude. Dryad Digital Repository, https://doi.org/10.5061/dryad.ffbg79cqv.
Seebacher, F., Elsey, R. M., & Trosclair, P. L. III (2003). Body temperature null distributions in reptiles with nonzero heat capacity: Seasonal thermoregulation in the American alligator (Alligator mississippiensis). Physiological and Biochemical Zoology, 76, 348-359.
Seebacher, F., Grigg, G. C., & Beard, L. A. (1999). Crocodiles as dinosaurs: Behavioural thermoregulation in very large ectotherms leads to high and stable body temperatures. Journal of Experimental Biology, 202, 77-86.
Sheridan, J. A., & Bickford, D. (2011). Shrinking body size as an ecological response to climate change. Nature Climate Change, 1, 401. https://doi.org/10.1038/nclimate1259.
Shine, R., & Kearney, M. (2001). Field studies of reptile thermoregulation: How well do physical models predict operative temperatures? Functional Ecology, 15, 282-288. https://doi.org/10.1046/j.1365-2435.2001.00510.x.
Sinervo, B., Mendez-de-la-Cruz, F., Miles, D. B., Heulin, B., Bastiaans, E., Villagran-Santa Cruz, M., … Sites, J. W. (2010). Erosion of lizard diversity by climate change and altered thermal niches. Science, 328, 894-899. https://doi.org/10.1126/science.1184695.
Stevenson, R. D. (1985a). Body size and limits to the daily range of body temperature in terrestrial ectotherms. The American Naturalist, 125, 102-117. https://doi.org/10.1086/284330.
Stevenson, R. D. (1985b). The relative importance of behavioral and physiological adjustments controlling body temperature in terrestrial ectotherms. The American Naturalist, 126, 362-386. https://doi.org/10.1086/284423.
Stillwell, R. C. (2010). Are latitudinal clines in body size adaptive? Oikos, 119, 1387-1390. https://doi.org/10.1111/j.1600-0706.2010.18670.x.
Sunday, J. M., Bates, A. E., & Dulvy, N. K. (2010). Global analysis of thermal tolerance and latitude in ectotherms. Proceedings of the Royal Society B: Biological Sciences, 278, 1823-1830.
Sunday, J. M., Bates, A. E., Kearney, M. R., Colwell, R. K., Dulvy, N. K., Longino, J. T., & Huey, R. B. (2014). Thermal-safety margins and the necessity of thermoregulatory behavior across latitude and elevation. Proceedings of the National Academy of Sciences of the United States of America, 111, 5610-5615. https://doi.org/10.1073/pnas.1316145111.
Verberk, W. C. E. P., & Bilton, D. T. (2011). Can oxygen set thermal limits and drive gigantism? PLoS ONE, 6(7), e22610.
Verberk, W. C. E. P., Leuven, R. S., van der Velde, G., & Gabel, F. (2018). Thermal limits in native and alien freshwater peracarid Crustacea: The role of habitat use and oxygen limitation. Functional Ecology, 32, 926-936. https://doi.org/10.1111/1365-2435.13050.
Verberk, W. C. E. P., Sommer, U., Davidson, R. L., & Viant, M. R. (2013). Anaerobic metabolism at thermal extremes: A metabolomic test of the oxygen limitation hypothesis in an aquatic insect. Integrative and Comparative Biology, 53, 609-619. https://doi.org/10.1093/icb/ict015.
فهرسة مساهمة: Keywords: Bergmann's rule; biophysical modelling; body size gradients; macrophysiology; mechanistic modelling
سلسلة جزيئية: Dryad 10.5061/dryad.ffbg79cqv
تواريخ الأحداث: Date Created: 20200129 Date Completed: 20210114 Latest Revision: 20210114
رمز التحديث: 20221213
DOI: 10.1111/1365-2656.13181
PMID: 31990044
قاعدة البيانات: MEDLINE
الوصف
تدمد:1365-2656
DOI:10.1111/1365-2656.13181