دورية أكاديمية

Culture dependent and independent analyses suggest a low level of sharing of endospore-forming species between mothers and their children.

التفاصيل البيبلوغرافية
العنوان: Culture dependent and independent analyses suggest a low level of sharing of endospore-forming species between mothers and their children.
المؤلفون: Avershina E; Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, 1433, Ås, Norway. ekaterina.avershina@gmail.com.; Faculty of Applied Ecology, Agricultural Sciences and Biotechnology, Inland Norway University of Applied Sciences, 2316, Hamar, Norway. ekaterina.avershina@gmail.com., Larsen MG; Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, 1433, Ås, Norway., Aspholm M; Department of Food Safety and Infection Biology, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, 369 Sentrum, 0102, Oslo, Norway., Lindback T; Department of Food Safety and Infection Biology, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, 369 Sentrum, 0102, Oslo, Norway., Storrø O; Department of Public Health and Nursing, Norwegian University of Science and Technology, 7491, Trondheim, Norway., Øien T; Department of Public Health and Nursing, Norwegian University of Science and Technology, 7491, Trondheim, Norway., Johnsen R; Department of Public Health and Nursing, Norwegian University of Science and Technology, 7491, Trondheim, Norway., Rudi K; Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, 1433, Ås, Norway.
المصدر: Scientific reports [Sci Rep] 2020 Feb 04; Vol. 10 (1), pp. 1832. Date of Electronic Publication: 2020 Feb 04.
نوع المنشور: Journal Article; Research Support, Non-U.S. Gov't
اللغة: English
بيانات الدورية: Publisher: Nature Publishing Group Country of Publication: England NLM ID: 101563288 Publication Model: Electronic Cited Medium: Internet ISSN: 2045-2322 (Electronic) Linking ISSN: 20452322 NLM ISO Abbreviation: Sci Rep Subsets: MEDLINE
أسماء مطبوعة: Original Publication: London : Nature Publishing Group, copyright 2011-
مواضيع طبية MeSH: Gastrointestinal Microbiome*, Endospore-Forming Bacteria/*metabolism, Actinobacteria/genetics ; Bacteriological Techniques ; Child, Preschool ; Clostridiales/genetics ; Endospore-Forming Bacteria/genetics ; Feces/microbiology ; Female ; Humans ; Infant ; Infant, Newborn ; Infectious Disease Transmission, Vertical ; RNA, Ribosomal, 16S/genetics ; Real-Time Polymerase Chain Reaction
مستخلص: Spore forming bacteria comprise a large part of the human gut microbiota. However, study of the endospores in gut microbiota is limited due to difficulties of culturing and numerous unknown germination factors. In this study we propose a new method for culture-independent characterization of endospores in stool samples. We have enriched DNA of spore-forming bacterial species from stool samples of 40 mother-child pairs from a previously described mother-child cohort. The samples were exposed to a two-step purification process comprising ethanol and ethidium monoazide (EMA) treatment to first kill vegetative cells and to subsequently eliminate their DNA from the samples. The composition of the ethanol-EMA resistant DNA was characterized by 16S rRNA marker gene sequencing. Operational taxonomic units (OTUs) belonging to the Clostridia class (OTU1: Romboutsia, OTU5: Peptostreptococcaceae and OTU14: Clostridium senso stricto) and one belonging to the Bacillus class (OTU20: Turicibacter) were significantly more abundant in the samples from mothers and children after ethanol-EMA treatment than in those treated with ethanol only. No correlation was observed between ethanol-EMA resistant OTUs detected in children and in their mothers, which indicates that a low level of spore-forming species are shared between mothers and their children. Anaerobic ethanol-resistant bacteria were isolated from all mothers and all children over 1 year of age. Generally, in 70% of the ethanol-treated samples used for anaerobic culturing, 16S rRNA gene sequences of bacterial isolates corresponded to OTUs detected in these samples after EMA treatment. We report a new DNA-based method for the characterization of endospores in gut microbiota. Our method has high degree of correspondence to the culture-based method, although it requires further optimization. Our results also indicate a high turnover of endospores in the gut during the first two years of life, perhaps with a high environmental impact.
References: Major, G. & Spiller, R. Irritable bowel syndrome, inflammatory bowel disease and the microbiome. Curr. Opin. Endocrinol. Diabetes Obes. 21(1), 15–21 (2014). (PMID: 24296462387140510.1097/MED.0000000000000032)
Abrahamsson, T. R., Wu, R. Y. & Jenmalm, M. C. Gut microbiota and allergy: the importance of the pregnancy period. Pediatr. Res. 77(1–2), 214–9 (2015). (PMID: 2531076110.1038/pr.2014.16525310761)
Nicholson, J. K. et al. Host-gut microbiota metabolic interactions. Sci. 336(6086), 1262–7 (2012). (PMID: 10.1126/science.1223813)
Moloney, R. D. et al. The microbiome: stress, health and disease. Mamm. Genome 25(1-2), 49–74 (2014). (PMID: 2428132010.1007/s00335-013-9488-524281320)
Li, H. & Jia, W. Cometabolism of microbes and host: implications for drug metabolism and drug-induced toxicity. Clin. Pharmacol. Ther. 94(5), 574–81 (2013). (PMID: 2393397110.1038/clpt.2013.15723933971)
Perez-Munoz, M. E. et al. A critical assessment of the “sterile womb” and “in utero colonization” hypotheses: implications for research on the pioneer infant microbiome. Microbiome 5(1), 48 (2017). (PMID: 28454555541010210.1186/s40168-017-0268-4)
Avershina, E. et al. Major faecal microbiota shifts in composition and diversity with age in a geographically restricted cohort of mothers and their children. Fems Microbiology Ecol. 87(1), 280–290 (2014). (PMID: 10.1111/1574-6941.12223)
Backhed, F. et al. Dynamics and Stabilization of the Human Gut Microbiome during the First Year of Life. Cell Host Microbe 17(5), 690–703 (2015). (PMID: 2597430610.1016/j.chom.2015.04.00425974306)
Dominguez-Bello, M. G. et al. Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns. Proc. Natl Acad. Sci. USA 107(26), 11971–5 (2010). (PMID: 2056685710.1073/pnas.100260110720566857)
Azad, M. B. et al. Gut microbiota of healthy Canadian infants: profiles by mode of delivery and infant diet at 4 months. CMAJ 185(5), 385–94 (2013). (PMID: 23401405360225410.1503/cmaj.121189)
Jakobsson, H. E. et al. Decreased gut microbiota diversity, delayed Bacteroidetes colonisation and reduced Th1 responses in infants delivered by caesarean section. Gut 63(4), 559–66 (2014). (PMID: 2392624410.1136/gutjnl-2012-30324923926244)
Pannaraj, P. S. et al. Association Between Breast Milk Bacterial Communities and Establishment and Development of the Infant Gut Microbiome. Jama Pediatrics 171(7), 647–654 (2017). (PMID: 28492938571034610.1001/jamapediatrics.2017.0378)
Biagi, E. et al. The Bacterial Ecosystem of Mother’s Milk and Infant’s Mouth and Gut. Frontiers in Microbiology 8 (2017).
Avershina, E. et al. Transition from infant- to adult-like gut microbiota. Env. Microbiol. 18(7), 2226–36 (2016). (PMID: 10.1111/1462-2920.13248)
Rodriguez, J. M. et al. The composition of the gut microbiota throughout life, with an emphasis on early life. Microb. Ecol. Health Dis. 26, 26050 (2015). (PMID: 2565199625651996)
Faith, J. J. et al. The long-term stability of the human gut microbiota. Sci. 341(6141), 1237439 (2013). (PMID: 10.1126/science.1237439)
Lozupone, C. A. et al. Diversity, stability and resilience of the human gut microbiota. Nat. 489(7415), 220–30 (2012). (PMID: 10.1038/nature11550)
Song, S. J. et al. Cohabiting family members share microbiota with one another and with their dogs. elife 2, e00458 (2013). (PMID: 23599893362808510.7554/eLife.00458)
Asnicar, F. et al. Studying Vertical Microbiome Transmission from Mothers to Infants by Strain-Level Metagenomic Profiling. Msystems 2(1) (2017).
Shen, A. A Gut Odyssey: The Impact of the Microbiota on Clostridium difficile Spore Formation and Germination. PLoS Pathog. 11(10), e1005157 (2015). (PMID: 26468647460736610.1371/journal.ppat.1005157)
Browne, H. P. et al. Culturing of ‘unculturable’ human microbiota reveals novel taxa and extensive sporulation. Nat. 533(7604), 543–546 (2016). (PMID: 10.1038/nature17645)
Lopetuso, L. R. et al. Commensal Clostridia: leading players in the maintenance of gut homeostasis. Gut Pathog. 5(1), 23 (2013). (PMID: 23941657375134810.1186/1757-4749-5-23)
Al-Hinai, M. A., Jones, S. W. & Papoutsakis, E. T. The Clostridium sporulation programs: diversity and preservation of endospore differentiation. Microbiol. Mol. Biol. Rev. 79(1), 19–37 (2015). (PMID: 25631287440296410.1128/MMBR.00025-14)
Kearney, S. M. et al. Endospores and other lysis-resistant bacteria comprise a widely shared core community within the human microbiota. ISME J. 12(10), 2403–2416 (2018). (PMID: 29899513615713110.1038/s41396-018-0192-z)
Soejima, T. et al. Photoactivated ethidium monoazide directly cleaves bacterial DNA and is applied to PCR for discrimination of live and dead bacteria. Microbiology Immunology 51(8), 763–775 (2007). (PMID: 1770463910.1111/j.1348-0421.2007.tb03966.x17704639)
Øien, T., Storrø, O. & Johnsen, R. Intestinal microbiota and its effect on the immune system–a nested case-cohort study on prevention of atopy among small children in Trondheim: the IMPACT study. Contemp. Clin. Trials 27(4), 389–95 (2006). (PMID: 1672328010.1016/j.cct.2006.02.00916723280)
Yu, Y. et al. Group-specific primer and probe sets to detect methanogenic communities using quantitative real-time polymerase chain reaction. Biotechnol. Bioeng. 89(6), 670–9 (2005). (PMID: 1569653710.1002/bit.2034715696537)
Edgar, R. C. UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat. Methods 10(10), 996–8 (2013). (PMID: 2395577210.1038/nmeth.260423955772)
Haas, B. J. et al. Chimeric 16S rRNA sequence formation and detection in Sanger and 454-pyrosequenced PCR amplicons. Genome Res. 21(3), 494–504 (2011). (PMID: 21212162304486310.1101/gr.112730.110)
DeSantis, T. Z. et al. Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl. Env. Microbiol. 72(7), 5069–72 (2006). (PMID: 10.1128/AEM.03006-05)
Auchtung, T. A. et al. Complete Genome Sequence of Turicibacter sp. Strain H121, Isolated from the Feces of a Contaminated Germ-Free Mouse. Microbiology Resource Announcements, 4(2) (2016).
Koransky, J. R., Allen, S. D. & Dowell, V. R. Use of Ethanol for Selective Isolation of Sporeforming Microorganisms. Appl. Environ. Microbiology 35(4), 762–765 (1978). (PMID: 10.1128/AEM.35.4.762-765.1978)
Salter, S. J. et al. Reagent and laboratory contamination can critically impact sequence-based microbiome analyses. BMC Biol. 12, 87 (2014). (PMID: 25387460422815310.1186/s12915-014-0087-z)
Vebø, H. et al. Bead-beating artefacts in the Bacteroidetes to Firmicutes ratio of the human stool metagenome, Elsevier Science. 78–80 (2016). (PMID: 2749834910.1016/j.mimet.2016.08.005)
Marchesi, J. R. Human distal gut microbiome. Env. Microbiol. 13(12), 3088–102. (2011). (PMID: 10.1111/j.1462-2920.2011.02574.x)
Bosshard, P. P., Zbinden, R. & Altwegg, M. Turicibacter sanguinis gen. nov., sp nov., a novel anaerobic, Gram-positive bacterium. Int. J. Syst. Evolut. Microbiology 52, 1263–1266 (2002).
Ohashi, Y. & Fujisawa, T. Analysis of Clostridium cluster XI bacteria in human feces. Biosci. Microbiota Food Health 38(2), 65–68 (2019). (PMID: 3110610910.12938/bmfh.18-02331106109)
Hauschild, A. H. W. & Holdeman, L. V. Clostridium-Celatum Sp-Nov, Isolated from Normal Human Feces. Int. J. Syst. Bacteriol. 24(4), 478–481 (1974). (PMID: 10.1099/00207713-24-4-478)
Zhang, J. N. et al. Direct degradation of cellulosic biomass to bio-hydrogen from a newly isolated strain Clostridium sartagoforme FZ11. Bioresour. Technol. 192, 60–67 (2015). (PMID: 2601169210.1016/j.biortech.2015.05.034)
Horn, N. Clostridium-Disporicum Sp-Nov, a Saccharolytic Species Able to Form 2 Spores Per Cell, Isolated from a Rat Cecum. Int. J. Syst. Bacteriol. 37(4), 398–401 (1987). (PMID: 10.1099/00207713-37-4-398)
Song, Y. L. et al. Clostridium bartlettii sp nov., isolated from human faeces. Anaerobe 10(3), 179–184 (2004). (PMID: 1670151610.1016/j.anaerobe.2004.04.00416701516)
Rabi, R. et al. Structural Characterization of Clostridium sordellii Spores of Diverse Human, Animal, and Environmental Origin and Comparison to Clostridium difficile Spores. Msphere, 2(5) (2017).
Lo, C. I. et al. Non-contiguous finished genome sequence and description of Clostridium dakarense sp nov. Stand. Genomic Sci. 9(1), 14–27 (2013). (PMID: 24501642391055510.4056/sigs.4097825)
Gerritsen, J. et al. Characterization of Romboutsia ilealis gen. nov., sp nov., isolated from the gastro-intestinal tract of a rat, and proposal for the reclassification of five closely related members of the genus Clostridium into the genera Romboutsia gen. nov., Intestinibacter gen. nov., Terrisporobacter gen. nov and Asaccharospora gen. nov. Int. J. Syst. Evolut. Microbiology 64, 1600–1616 (2014). (PMID: 10.1099/ijs.0.059543-0)
Kim, J. Y. et al. Genomic Analysis of a Pathogenic Bacterium, Paeniclostridium sordellii CBA7122 Containing the Highest Number of rRNA Operons, Isolated from a Human Stool Sample. Frontiers in Pharmacology 8, (2017).
Ferretti, P. et al. Mother-to-Infant Microbial Transmission from Different Body Sites Shapes the Developing Infant Gut Microbiome. Cell Host Microbe 24(1) 133–145 e5 (2018). (PMID: 30001516671657910.1016/j.chom.2018.06.005)
Yassour, M. et al. Strain-Level Analysis of Mother-to-Child Bacterial Transmission during the First Few Months of Life. Cell Host Microbe 24(1), 146–154 e4 (2018). (PMID: 30001517609188210.1016/j.chom.2018.06.007)
Korpela, K. et al. Selective maternal seeding and environment shape the human gut microbiome. Genome Res. 28(4), 561–568 (2018). (PMID: 29496731588024510.1101/gr.233940.117)
المشرفين على المادة: 0 (RNA, Ribosomal, 16S)
تواريخ الأحداث: Date Created: 20200206 Date Completed: 20201110 Latest Revision: 20210203
رمز التحديث: 20240628
مُعرف محوري في PubMed: PMC7000398
DOI: 10.1038/s41598-020-58858-y
PMID: 32020012
قاعدة البيانات: MEDLINE
الوصف
تدمد:2045-2322
DOI:10.1038/s41598-020-58858-y