دورية أكاديمية

Antibody, but not B-cell-dependent antigen presentation, plays an essential role in preventing Chlamydia systemic dissemination in mice.

التفاصيل البيبلوغرافية
العنوان: Antibody, but not B-cell-dependent antigen presentation, plays an essential role in preventing Chlamydia systemic dissemination in mice.
المؤلفون: Malaviarachchi PA; Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, AR, USA., Mercado MAB; Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, AR, USA., McSorley SJ; Center for Comparative Medicine, Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California, Davis, CA, USA., Li LX; Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, AR, USA.
المصدر: European journal of immunology [Eur J Immunol] 2020 May; Vol. 50 (5), pp. 676-684. Date of Electronic Publication: 2020 Mar 12.
نوع المنشور: Journal Article; Research Support, N.I.H., Extramural
اللغة: English
بيانات الدورية: Publisher: Wiley-VCH Country of Publication: Germany NLM ID: 1273201 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1521-4141 (Electronic) Linking ISSN: 00142980 NLM ISO Abbreviation: Eur J Immunol Subsets: MEDLINE
أسماء مطبوعة: Publication: <2005->: Weinheim : Wiley-VCH
Original Publication: Weinheim, Verlag Chemie GmbH.
مواضيع طبية MeSH: Antibodies, Bacterial/*biosynthesis , B-Lymphocytes/*immunology , Bacteremia/*immunology , Bone Marrow Cells/*immunology , CD4-Positive T-Lymphocytes/*immunology , Chlamydia Infections/*immunology , Chlamydia trachomatis/*immunology, Animals ; Antigen Presentation ; B-Lymphocytes/microbiology ; Bacteremia/microbiology ; Bacteremia/pathology ; Bone Marrow Cells/microbiology ; CD4-Positive T-Lymphocytes/microbiology ; Chlamydia Infections/microbiology ; Chlamydia Infections/pathology ; Chlamydia trachomatis/growth & development ; Chlamydia trachomatis/pathogenicity ; Disease Models, Animal ; Female ; Immunity, Humoral ; Immunoglobulin Isotypes ; Mice ; Transplantation Chimera ; Vagina/immunology ; Vagina/microbiology ; Whole-Body Irradiation
مستخلص: The obligate intracellular bacterium Chlamydia trachomatis causes the most prevalent bacterial sexually transmitted infection worldwide. CD4 T cells play a central role in the protective immunity against Chlamydia female reproductive tract (FRT) infection, while B cells are thought to be dispensable for resolution of primary Chlamydia infection in mouse models. We recently reported an unexpected requirement of B cells in local Chlamydia-specific CD4 T-cell priming and bacterial containment within the FRT. Here, we sought to tackle the precise effector function of B cells during Chlamydia primary infection. Using mixed bone marrow chimeras that lack B-cell-dependent Ag presentation (MHCII B - / - ) or devoid of circulating antibodies (AID -/- × μS -/- ), we show that Chlamydia-specific CD4 T-cell expansion does not rely on Ag presentation by B cells. Importantly, we demonstrate that antibody, but not B-cell-dependent Ag presentation, is required for preventing systemic bacterial dissemination following Chlamydia FRT infection.
(© 2020 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.)
References: Taylor, H. R., Burton, M. J., Haddad, D., West, S. and Wright, H., Trachoma. Lancet 2014. 384: 2142-2152.
Abdelsamed, H., Peters, J. and Byrne, G. I., Genetic variation in Chlamydia trachomatis and their hosts: impact on disease severity and tissue tropism. Future Microbiol. 2013. 8: 1129-1146.
World Health Organization: Global health sector strategy on sexually transmitted infections 2016-2021. World Health Organization, Geneva, 2016.
Division of STD Prevention-CDC. Sexually transmitted disease surveillance 2017. Division of STD Prevention-CDC, Atlanta, 2018.
Van Voorhis, W. C., Barrett, L. K., Sweeney, Y. T., Kuo, C. C. and Patton, D. L., Repeated Chlamydia trachomatis infection of Macaca nemestrina fallopian tubes produces a Th1-like cytokine response associated with fibrosis and scarring. Infect. Immun. 1997. 65: 2175-2182.
Vicetti Miguel, R. D., Quispe Calla, N. E., Pavelko, S. D. and Cherpes, T. L., Intravaginal Chlamydia trachomatis challenge infection elicits TH1 and TH17 immune responses in mice that promote pathogen clearance and genital tract damage. PLoS ONE. 2016. 11: e0162445.
Lijek, R. S., Helble, J. D., Olive, A. J., Seiger, K. W. and Starnbach, M. N., Pathology after Chlamydia trachomatis infection is driven by nonprotective immune cells that are distinct from protective populations. Proc. Natl. Acad. Sci. USA 2018. 376: 201711356.
Stary, G. and Stary, A., Lymphogranuloma venereum outbreak in Europe. J. Dtsch. Dermatol. Ges. 2008. 6: 935-940.
de Voux, A., Kent, J. B., Macomber, K., Krzanowski, K., Jackson, D., Starr, T., Johnson, S. et al., Notes from the field: cluster of lymphogranuloma venereum cases among men who have sex with men - Michigan, August 2015-April 2016. MMWR Morb. Mortal. Wkly. Rep. 2016. 65: 920-921.
López, L. S., La Rosa, L., Entrocassi, A. C., Caffarena, D., Santos, B. and Fermepin, M. R., Rectal lymphogranuloma venereum, Buenos Aires, Argentina. Emerging Infect. Dis. 2019. 25: 598-599.
Bennett, J. E., Dolin, R., Blaser, M. J. and Mandell, G. L. Mandell, Douglas, and Bennett's principles and practice of infectious diseases e-book. Elsevier Health Sciences, Amsterdam, 2009.
Schumacher, H. R. Jr., Chlamydia-associated reactive arthritis. Isr. Med. Assoc. J. 2000. 2: 532-535.
Gerard, H. C., Stanich, J. A., Whittum-Hudson, J. A., Schumacher, H. R., Carter, J. D. and Hudson, A. P., Patients with Chlamydia-associated arthritis have ocular (trachoma), not genital, serovars of C. trachomatis in synovial tissue. Microb. Pathog. 2010. 48: 62-68.
Wang, S. P., Eschenbach, D. A., Holmes, K. K., Wager, G. and Grayston, J. T., Chlamydia trachomatis infection in Fitz-Hugh-Curtis syndrome. Am. J. Obstet. Gynecol. 1980. 138: 1034-1038.
Kobayashi, Y., Takeuchi, H., Kitade, M., Kikuchi, I., Sato, Y. and Kinoshita, K., Pathological study of Fitz-Hugh-Curtis syndrome evaluated from fallopian tube damage. J. Obstet. Gynaecol. Res. 2006. 32: 280-285.
Rank, R. G. and Yeruva, L., An alternative scenario to explain rectal positivity in Chlamydia-infected individuals. Clin. Infect. Dis. 2015. 60: 1585-1586.
Chandra, N. L., Broad, C., Folkard, K., Town, K., Harding-Esch, E. M., Woodhall, S. C., Saunders, J. M. et al., Detection of Chlamydia trachomatis in rectal specimens in women and its association with anal intercourse: a systematic review and meta-analysis. Sex. Transm. Infect. 2018. 94: 320-326.
Campbell, L. A. and Kuo, C.-C., Chlamydia pneumoniae-an infectious risk factor for atherosclerosis? Nat. Rev. Microbiol. 2004. 2: 23-32.
Zafiratos, M. T., Manam, S., Henderson, K. K., Ramsey, K. H. and Murthy, A. K., CD8+ T cells mediate Chlamydia pneumonia-induced atherosclerosis in mice. Pathog. Dis. 2015. 73: ftv052.
Xue, L., Liang, Y.-H., Gao, Y.-Y. and Wang, X.-J., Clinical study of Chlamydia pneumoniae infection in patients with coronary heart disease. BMC Cardiovasc. Disord. 2019. 19: 110.
de la Maza, L. M., Pal, S., Khamesipour, A. and Peterson, E. M., Intravaginal inoculation of mice with the Chlamydia trachomatis mouse pneumonitis biovar results in infertility. Infect. Immun. 1994. 62: 2094-2097.
Darville, T. and Hiltke, T. J., Pathogenesis of genital tract disease due to Chlamydia trachomatis. J. Infect. Dis. 2010. 201(Suppl 2): S114-S125.
Rank, R. G. and Whittum-Hudson, J. A., Protective immunity to chlamydial genital infection: evidence from animal studies. J. Infect. Dis. 2010. 201(Suppl 2): S168-S177.
Brunham, R. C. and Rey-Ladino, J., Immunology of Chlamydia infection: implications for a Chlamydia trachomatis vaccine. Nat. Rev. Immunol. 2005. 5: 149-161.
Labuda, J. C. and McSorley, S. J., Diversity in the T cell response to Chlamydia-sum are better than one. Immunol. Lett. 2018. 202: 59-64.
Ramsey, K. H., Soderberg, L. S. and Rank, R. G., Resolution of chlamydial genital infection in B-cell-deficient mice and immunity to reinfection. Infect. Immun. 1988. 56: 1320-1325.
Morrison, R. P., Chlamydia trachomatis genital tract infection of antibody-deficient gene knockout mice. Infect. Immun. 1997. 65: 1993-1999.
Morrison, S. G. and Morrison, R. P., A predominant role for antibody in acquired immunity to chlamydial genital tract reinfection. J. Immunol. 2005. 175: 7536-7542.
Li, L.-X. and McSorley, S. J., B cells enhance antigen-specific CD4 T cell priming and prevent bacteria dissemination following Chlamydia muridarum genital tract infection. PLoS Pathog. 2013. 9: e1003707.
Wojciechowski, W., Harris, D. P., Sprague, F., Mousseau, B., Makris, M., Kusser, K., Honjo, T. et al., Cytokine-producing effector B cells regulate type 2 immunity to H. polygyrus. Immunity 2009. 30: 421-433.
O'Donnell, H., Pham, O. H., Li, L.-X., Atif, S. M., Lee, S.-J., Ravesloot, M. M., Stolfi, J. L. et al., Toll-like receptor and inflammasome signals converge to amplify the innate bactericidal capacity of T helper 1 cells. Immunity 2014. 40: 213-224.
Muramatsu, M., Kinoshita, K., Fagarasan, S., Yamada, S., Shinkai, Y. and Honjo, T., Class switch recombination and hypermutation require activation-induced cytidine deaminase (AID), a potential RNA editing enzyme. Cell 2000. 102: 553-563.
Boes, M., Esau, C., Fischer, M. B., Schmidt, T., Carroll, M. and Chen, J., Enhanced B-1 cell development, but impaired IgG antibody responses in mice deficient in secreted IgM. J. Immunol. 1998. 160: 4776-4787.
Kumazaki, K., Tirosh, B., Maehr, R., Boes, M., Honjo, T. and Ploegh, H. L., AID-/-mus-/- mice are agammaglobulinemic and fail to maintain B220-CD138+ plasma cells. J. Immunol. 2007. 178: 2192-2203.
Perlmutter, R. M., Hansburg, D., Briles, D. E., Nicolotti, R. A. and Davie, J. M., Subclass restriction of murine anti-carbohydrate antibodies. J. Immunol. 1978. 121: 566-572.
Ingulli, E., Mondino, A., Khoruts, A. and Jenkins, M. K., In vivo detection of dendritic cell antigen presentation to CD4(+) T cells. J. Exp. Med. 1997. 185: 2133-2141.
Attanavanich, K. and Kearney, J. F., Marginal zone, but not follicular B cells, are potent activators of naive CD4 T cells. J. Immunol. 2004. 172: 803-811.
Willard-Mack, C. L., Normal structure, function, and histology of lymph nodes. Toxicol. Pathol. 2006. 34: 409-424.
Johnson, R. M., Yu, H., Strank, N. O., Karunakaran, K., Zhu, Y. and Brunham, R. C., B cell presentation of Chlamydia antigen selects out protective CD4γ13 T cells: implications for genital tract tissue-resident memory lymphocyte clusters. Infect. Immun. 2018. 86: e00614-e00617.
Zhao, X., Deak, E., Soderberg, K., Linehan, M., Spezzano, D., Zhu, J., Knipe, D. M. et al., Vaginal submucosal dendritic cells, but not Langerhans cells, induce protective Th1 responses to herpes simplex virus-2. J. Exp. Med. 2003. 197: 153-162.
Teitelbaum, R., Glatman-Freedman, A., Chen, B., Robbins, J. B., Unanue, E., Casadevall, A. and Bloom, B. R., A mAb recognizing a surface antigen of Mycobacterium tuberculosis enhances host survival. Proc. Natl. Acad. Sci. U.S.A. 1998. 95: 15688-15693.
Fulop, M., Mastroeni, P., Green, M. and Titball, R. W., Role of antibody to lipopolysaccharide in protection against low- and high-virulence strains of Francisella tularensis. Vaccine 2001. 19: 4465-4472.
Nanton, M. R., Way, S. S., Shlomchik, M. J. and McSorley, S. J., Cutting edge: B cells are essential for protective immunity against Salmonella independent of antibody secretion. J. Immunol. 2012. 189: 5503-5507.
Casadevall, A. and Pirofski, L.-A., A new synthesis for antibody-mediated immunity. Nat. Immunol. 2011. 13: 21-28.
Peeling, R., Maclean, I. W. and Brunham, R. C., In vitro neutralization of Chlamydia trachomatis with monoclonal antibody to an epitope on the major outer membrane protein. Infect. Immun. 1984. 46: 484-488.
Zhang, Y. X., Stewart, S. J. and Caldwell, H. D., Protective monoclonal antibodies to Chlamydia trachomatis serovar- and serogroup-specific major outer membrane protein determinants. Infect. Immun. 1989. 57: 636-638.
Peterson, E. M., de la Maza, L. M., Brade, L. and Brade, H., Characterization of a neutralizing monoclonal antibody directed at the lipopolysaccharide of Chlamydia pneumoniae. Infect. Immun. 1998. 66: 3848-3855.
Morrison, R. P. and Caldwell, H. D., Immunity to murine chlamydial genital infection. Infect. Immun. 2002. 70: 2741-2751.
Naglak, E. K., Morrison, S. G. and Morrison, R. P., Neutrophils are central to antibody-mediated protection against genital Chlamydia. Infect. Immun. 2017. 85: e00409-17.
Naglak, E. K., Morrison, S. G. and Morrison, R. P., IFNγ is required for optimal antibody-mediated immunity against genital Chlamydia infection. Infect. Immun. 2016. 84: 3232-3242.
Sturdevant, G. L. and Caldwell, H. D., Innate immunity is sufficient for the clearance of Chlamydia trachomatis from the female mouse genital tract. Pathog. Dis. 2014. 72: 70-73.
Perry, L. L., Feilzer, K. and Caldwell, H. D., Immunity to Chlamydia trachomatis is mediated by T helper 1 cells through IFN-gamma-dependent and -independent pathways. J. Immunol. 1997. 158: 3344-3352.
Cotter, T. W., Ramsey, K. H., Miranpuri, G. S., Poulsen, C. E. and Byrne, G. I., Dissemination of Chlamydia trachomatis chronic genital tract infection in gamma interferon gene knockout mice. Infect. Immun. 1997. 65: 2145-2152.
Poston, T. B., O'Connell, C. M., Girardi, J., Sullivan, J. E., Nagarajan, U. M., Marinov, A., Scurlock, A. M. et al., T cell-independent gamma interferon and B cells cooperate to prevent mortality associated with disseminated Chlamydia muridarum genital tract infection. Infect. Immun. 2018. 86: e00143-18.
Li, L.-X. and McSorley, S. J., A re-evaluation of the role of B cells in protective immunity to Chlamydia infection. Immunol. Lett. 2015. 164: 88-93.
Scidmore, M. A., Cultivation and laboratory maintenance of Chlamydia trachomatis. Curr. Protoc. Microbiol. 2006. 00: 11A.1.1-11A.1.25.
Li, L.-X., Labuda, J. C., Imai, D. M., Griffey, S. M. and McSorley, S. J., CCR7 deficiency allows accelerated clearance of Chlamydia from the female reproductive tract. J. Immunol. 2017. 199: 2547-2554.
Tuffrey, M. and Taylor-Robinson, D., Progesterone as a key factor in the development of a mouse model for genital-tract infection with Chlamydia trachomatis. FEMS Microbiol. Lett. 1981. 12: 111-115.
Su, H. and Caldwell, H. D., In vitro neutralization of Chlamydia trachomatis by monovalent Fab antibody specific to the major outer membrane protein. Infect. Immun. 1991. 59: 2843-2845.
Cossarizza, A., Chang, H.-D., Radbruch, A., Acs, A., Adam, D., Adam-Klages, S., Agace, W. W. et al., Guidelines for the use of flow cytometry and cell sorting in immunological studies (second edition). Eur. J. Immunol. 2019. 49: 1457-1973.
معلومات مُعتمدة: P20 GM109005 United States GM NIGMS NIH HHS; R01 AI139047 United States AI NIAID NIH HHS; R01 AI139124 United States AI NIAID NIH HHS; R21 AI117303 United States AI NIAID NIH HHS; P30 GM145393 United States GM NIGMS NIH HHS; P20 GM103625 United States GM NIGMS NIH HHS; R01 AI103422 United States AI NIAID NIH HHS
فهرسة مساهمة: Keywords: Antibody; Antigen presentation; B cells; Chlamydia; Infection
المشرفين على المادة: 0 (Antibodies, Bacterial)
0 (Immunoglobulin Isotypes)
تواريخ الأحداث: Date Created: 20200207 Date Completed: 20201028 Latest Revision: 20230217
رمز التحديث: 20240628
مُعرف محوري في PubMed: PMC7199221
DOI: 10.1002/eji.201948391
PMID: 32026472
قاعدة البيانات: MEDLINE
الوصف
تدمد:1521-4141
DOI:10.1002/eji.201948391