دورية أكاديمية

Growth and establishment of monodominant stands affected by ENSO and flooding in the Pantanal.

التفاصيل البيبلوغرافية
العنوان: Growth and establishment of monodominant stands affected by ENSO and flooding in the Pantanal.
المؤلفون: Gris D; Programa de Pós-Graduação em Ecologia e Conservação, Universidade Federal de Mato Grosso do Sul (UFMS), Campo Grande, Mato Grosso do Sul, 79070-900, Brazil. darlenegris@hotmail.com.; Grupo de Pesquisa em Ecologia Florestal, Instituto de Desenvolvimento Sustentável Mamirauá (IDSM), Tefé, Amazonas, Brazil. darlenegris@hotmail.com., Paixão E; Programa de Pós-Graduação em Ecologia e Conservação da Biodiversidade, Universidade Federal de Mato Grosso (UFMT), Cuiabá, Mato Grosso, 78060-755, Brazil., Arruda RCO; Laboratório de Anatomia Vegetal, Instituto de Biociências, Universidade Federal de Mato Grosso do Sul (UFMS), Campo Grande, Mato Grosso do Sul, 79070-900, Brazil., Ishii IH; Laboratório de Botânica, Campus do Pantanal, Universidade Federal do Mato Grosso do Sul (UFMS), Corumbá, Mato Grosso do Sul, 79304-020, Brazil., Marques MR; Laboratório de Bioquímica, Instituto de Biociências, Universidade Federal de Mato Grosso do Sul (UFMS), Campo Grande, Mato Grosso do Sul, 79070-900, Brazil., Damasceno-Junior GA; Laboratório de Ecologia Vegetal/Laboratório de Botânica, Instituto de Biociências, Universidade Federal de Mato Grosso do Sul (UFMS), Campo Grande, Mato Grosso do Sul, 79070-900, Brazil.
المصدر: Scientific reports [Sci Rep] 2020 Feb 25; Vol. 10 (1), pp. 3424. Date of Electronic Publication: 2020 Feb 25.
نوع المنشور: Journal Article; Research Support, Non-U.S. Gov't
اللغة: English
بيانات الدورية: Publisher: Nature Publishing Group Country of Publication: England NLM ID: 101563288 Publication Model: Electronic Cited Medium: Internet ISSN: 2045-2322 (Electronic) Linking ISSN: 20452322 NLM ISO Abbreviation: Sci Rep Subsets: PubMed not MEDLINE; MEDLINE
أسماء مطبوعة: Original Publication: London : Nature Publishing Group, copyright 2011-
مستخلص: Climatic factors can influence the establishment and growth of wood species, but little is known about the effect of these factors on monodominant communities in wetlands. Therefore, we asked how climatic factors, such as ENSO (El Niño-Southern Oscillation), precipitation and flooding, influence growth and establishment of the dominant species Erythrina fusca in the Pantanal. We determined the age of sampled individuals, the age of the population and evaluated the effects of climate on tree growth. We obtained samples for dendrochronological analyses using destructive (seven individuals) and non-destructive methods. We cross-dated and built a chronology, correlating results with climatic factors. We sampled 0.6 ha of the population and separated individuals into diameter classes to determine age based on diameter/age ratio obtained through dendrochronological analyses. We obtained a chronology with individuals up to 34 years old, while in the population sample, the oldest individual was 54 years old. The factors that influenced growth during the study period were precipitation (positive correlation) and El Niño (negative correlation). E. fusca individuals seem to grow more during the period of highest precipitation, and El Niño events reduce precipitation in the Pantanal, resulting in a decrease in the growth of E. fusca individuals. We detected a decrease of young individuals in the last nine years, which seems to be related to the decrease in minimum flood levels. This indicates a future decline in the number of individuals. These results allow us to propose measures to protect these monodominant formations, which mainly involve avoiding further anthropic activities, that could reduce flooding levels.
References: Connell, J. H. & Lowman, M. D. Low-diversity tropical rain forests: some possible mechanisms for their existence. Am. Nat. 134, 88–119, https://doi.org/10.1086/284967 (1989). (PMID: 10.1086/284967)
Hart, T. B., Hart, J. A. & Murphy, P. G. Monodominant and species-rich forests of the humid tropics: causes for their co-occurrence. Am. Nat. 133, 613–633, https://doi.org/10.1086/284941 (1989). (PMID: 10.1086/284941)
Hart, T. B. Monospecific dominance in tropical rain forests. Trends Ecol. Evol. 5, 6–11, https://doi.org/10.1016/0169-5347(90)90005-X (1990). (PMID: 10.1016/0169-5347(90)90005-X21232309)
Torti, S. D., Coley, P. D. & Kursar, T. A. Causes and consequences of monodominance in tropical lowland forests. Am. Nat. 157, 141–153, https://doi.org/10.1086/318629 (2001). (PMID: 10.1086/31862918707268)
Junk, W. J., Piedade, M. T. F., Nunes da Cunha, C., Wittmann, F. & Schöngart, J. Macrohabitat studies in large Brazilian floodplains to support sustainable development in the face of climate change. Ecohydrol. Hydrobiol. 18(4), 334–344, https://doi.org/10.1016/j.ecohyd.2018.11.007 (2018). (PMID: 10.1016/j.ecohyd.2018.11.007)
Ter Steege, H. et al. Rarity of monodominance in hyperdiverse Amazonian forests. Sci. Rep. 9, 13822, https://doi.org/10.1038/s41598-019-50323-9 (2019). (PMID: 10.1038/s41598-019-50323-9315549206761143)
Worbes, M., Staschel, R., Roloff, A. & Junk, W. M. Tree rings analysis reveals age structure, dynamics an wood production of a natural forest stand in Cameroon. For. Ecol. Manag. 173, 105–123, https://doi.org/10.1016/S0378-1127(01)00814-3 (2003). (PMID: 10.1016/S0378-1127(01)00814-3)
Brienen, R. J. W., Lebrija-Trejos, E., Zuidema, P. A. & Martínez-Ramos, M. Climate-growth analysis for a Mexican dry forest tree shows strong impact of sea surface temperatures and predicts future growth declines. Glob. Chang. Biol. 16, 2001–2012, https://doi.org/10.1111/j.1365-2486.2009.02059.x (2010). (PMID: 10.1111/j.1365-2486.2009.02059.x)
Campbell, D. G., Daly, D. C., Prance, G. T. & Maciel, U. N. Quantitative ecological inventory of terra firme and várzea tropical forest on the Rio Xingú, Brazilian Amazon. Brittonia 38, 369–393, https://doi.org/10.2307/2807085 (1986). (PMID: 10.2307/2807085)
Junk, W. J., Bayley, P. B. & Sparks, R. E. In Proceedings of the International Large River Symposium (ed. Dodge D. P.) 110–127 (Canadian Journal of Fisheries and Aquatic Sciences, 1989).
Ishii, I. H. Estudos dendrocronológicos e determinação da idade de árvores das Matas Ciliares do Pantanal Sul-matogrossense, PhD thesis, Universidade Federal de São Carlos (1998).
Schöngart, J., Piedade, M. T. F., Ludwigshausen, S., Horna, V. & Worbes, M. Phenology and stem-growth periodicity of tree species in Amazonian floodplain forests. J. Trop. Ecol. 18, 581–597, https://doi.org/10.1017/S0266467402002389 (2002). (PMID: 10.1017/S0266467402002389)
Schöngart, J. et al. Teleconnection between tree growth in the Amazonian floodplains and the El Niño-Southern Oscillation effect. Glob. Chang. Biol. 10, 683–692, https://doi.org/10.1111/j.1529-8817.2003.00754.x (2004). (PMID: 10.1111/j.1529-8817.2003.00754.x)
Brienen, R. J. W. & Zuidema, P. A. Lifetime growth patterns and ages of Bolivian rain forest trees obtained by tree ring analysis. J. Ecol. 94, 481–493, https://doi.org/10.1111/j.1365-2745.2005.01080.x (2006). (PMID: 10.1111/j.1365-2745.2005.01080.x)
Fortes, C. F. et al. Dendrochronological records of a pioneer tree species containing ENSO signal in the Pantanal, Brazil. Braz. J. Bot. 41, 167–174, https://doi.org/10.1007/s40415-017-0434-8 (2018). (PMID: 10.1007/s40415-017-0434-8)
Schöngart, J., Arieira, J., Fortes, C. F., Cezarine de Arruda, E. & Nunes da Cunha, C. Age-related and stand-wise estimates of carbon stocks and sequestration in the aboveground coarse wood biomass of wetland forests in the northern Pantanal, Brazil. Biogeosciences 8, 3407–3421, https://doi.org/10.5194/bg-8-3407-2011 (2011). (PMID: 10.5194/bg-8-3407-2011)
Hutchings, M. J. In Plant ecology (ed. Crawley M. J.) 325–358 (Blackwell Oxford-Science (1997).
Pott, A., Oliveira, A. K. M., Damasceno-Junior, G. A. & Silva, J. S. V. Plant diversity of the Pantanal wetland. Braz. J. Biol. 71, 265–273, https://doi.org/10.1590/S1519-69842011000200005 (2011). (PMID: 10.1590/S1519-6984201100020000521537599)
Lorenzi, H. Árvores Brasileiras: Manual de Identificação e Cultivo de Plantas Arbóreas do Brasil. (Vol. 2, Nova Odessa, São Paulo (1998).
Cordero, J. & Boshier, D. H. Erythrina. In Árboles de Centroamérica: Un Manual para Extensionistas (eds. Cordero J., Boshier, D. H.) 536–538 (OFI/CATIE (2003).
Pott, A. & Pott, V. J. Plantas do Pantanal. (Embrapa, Brasília (1994).
Parrini, R. & Raposo, M. A. Aves explorando flores de Erythrina fusca (Leguminosae, Fabaceae) durante a estação seca no Pantanal de Mato Grosso. Iheringia 100, 97–101, https://doi.org/10.1590/S0073-47212010000200001 (2010). (PMID: 10.1590/S0073-47212010000200001)
Worbes, M. Growth rings, increment and age of trees in inundation forests, savannas and a mountain forest in the Neotropics. IAWA Bull. 10, 109–122, https://doi.org/10.1163/22941932-90000479 (1989). (PMID: 10.1163/22941932-90000479)
Worbes, M. How to measure growth dynamics in tropical trees. A review. IAWA Bull. 16, 337–351, https://doi.org/10.1163/22941932-90001424 (1995). (PMID: 10.1163/22941932-90001424)
Adámoli, J. Fitogeografia do Pantanal. In Simpósio sobre Recursos Naturais e Socioeconômicos do Pantanal. (Embrapa CPAP/UFMS (1986).
Junk, W. J. et al. Brazilian wetlands: their definition, delineation, and classification for research, sustainable management, and protection. Aquat. Conserv.: Mar. Freshw. Ecosyst. 24, 5–22, https://doi.org/10.1002/aqc.2386 (2014). (PMID: 10.1002/aqc.2386)
Nunes da Cunha, C. & Junk, W. J. A Classificação dos Macrohabitats do Pantanal Mato-grossense. In Classificação e Delineamento das Áreas Úmidas Brasileiras e de seus Macrohabitats (eds. Nunes da Cunha, C., Piedade, M. T. F. & Junk, W. F.). 77–122 (EdUFMT, (2014).
Frota, A. V. B., Ikeda-Castrillon, S. K., Kantek, D. L. Z. & Silva, C. J. Macrohabitats da Estação Ecológica de Taiamã, no contexto da Área Úmida Pantanal mato-grossense. Brasil. Bol. Mus. Paraense Emílio Goeldi – Cien. Nat. 12, 239–254 (2017).
QGIS Development Team. QGIS Geographic Information System. Open Source Geospatial Foundation Project (2018). http://qgis.osgeo.org . Accessed August 2019.
IBGE – Instituto Brasileiro de Geografia e Estatística Índice de Organização do Território/ Malhas Territoriais/ Malhas Municipais/ Munícipio 2015/ Brasil. ftp://geoftp.ibge.gov.br/organizacao_do_territorio/malhas_territoriais/malhas_municipais/municipio_2015/Brasil/BR/. (Accessed August 2019).
MMA – Ministério do Meio Ambiente. Download de dados geográficos. http://mapas.mma.gov.br/i3geo/datadownload.htm . (Accessed August 2019).
ICMBio-MMA – Instituto Chico Mendes de Conservação da Biodiversidade e Ministério do Meio Ambiente. Estação Ecológica de Taiamã. http://www.icmbio.gov.br/esectaiama/downloads . (Accessed August 2019).
Alvares, C. A., Stape, J. L., Sentelhas, P. C., Gonçalves, J. L. M. & Sparovek, G. Koppen’s climate classification map for Brazil. Meteorol. Z. 22(6), 711–728, https://doi.org/10.1127/0941-2948/2013/0507 (2013). (PMID: 10.1127/0941-2948/2013/0507)
Instituto Nacional de Meteorologia – INMET. Estações Meteorológica de Observação de Superfície Automática. http://www.inmet.gov.br/portal/index.php?r=estacoes/estacoesAutomaticas . (Accessed 15 March 2019).
Marinha do Brasil. Serviço de Sinalização Náutica do Oeste. https://www.marinha.mil.br/ssn-6/ . (Accessed 15 March 2019).
Fernandes, F. A., Fernandes, A. H. B. M., Soares, M. T. S., Pellegrin, L. A. & Lima, I. B. T. Atualização do Mapa de Solos da Planície Pantaneira para o Sistema Brasileiro de Classificação de Solos (Comunicado técnico, 61). (Embrapa Pantanal, Corumbá, (2007).
Embrapa - Empresa Brasileira de Pesquisa Agropecuária. Sistema Brasileiro de Classificação de Solos. (Embrapa, Brasília (2006).
Machado, N. G. et al. Growth rhythm of Vochysia divergens Pohl (Vochysiaceae) in the Northern Pantanal. Acta Sci. Biol. Sci. 37, 81–90, https://doi.org/10.4025/actascibiolsci.v37i1.24330 (2015). (PMID: 10.4025/actascibiolsci.v37i1.24330)
Sallo, F. S., Sanches, L., Dias, V. R. M., Palácios, R. S. & Nogueira, J. S. Stem water storage dynamics of Vochysia divergens in a seasonally flooded environment. Agric. For. Meteorol. 232, 566–575, https://doi.org/10.1016/j.agrformet.2016.10.015 (2017). (PMID: 10.1016/j.agrformet.2016.10.015)
Locosselli, G. M., Buckeridge, M. S., Moreira, M. Z. & Ceccantini, G. A multi-proxy dendroecological analysis of two tropical species (Hymenaea spp., Leguminosae) growing in a vegetation mosaic. Trees 27(1), 25–36, https://doi.org/10.1007/s00468-012-0764-x (2013). (PMID: 10.1007/s00468-012-0764-x)
Locosselli, G. M., Schöngart, J. & Ceccantini, G. Climate/growth relations and teleconnections for a Hymenaea courbaril (Leguminosae) population inhabiting the dry forest on karst. Trees 30(4), 1127–1136, https://doi.org/10.1007/s00468-015-1351-8 (2016). (PMID: 10.1007/s00468-015-1351-8)
Mori, S. A., Mattos-Silva, L. A., Lisboa, G. & Coradin, L. Manual de Manejo do Herbário Fanerogâmico. (CEPLAC, Ilhéus (1989).
Bridson, D. M. & Forman, L. The Herbarium Handbook. (Royal Botanic Gardens, Kew (2004).
Mariaux, A. Les cernes dans les bois tropicaux africains, nature et periodicité. Bois For. Trop. 113, 3–14, https://doi.org/10.19182/bft2016.327.a31296 (1967). (PMID: 10.19182/bft2016.327.a31296)
Schöngart, J., Piedade, M. T. F., Wittmann, F., Junk, W. J. & Worbes, M. Wood growth patterns of Macrolobium acaciifolium (Benth.) Benth. (Fabaceae) in Amazonian black-water and white-water floodplain forests. Oecologia 145, 454–461, https://doi.org/10.1007/s00442-005-0147-8 (2005). (PMID: 10.1007/s00442-005-0147-816025354)
Fonseca-Júnior, S. F., Piedade, M. T. F. & Schöngart, J. Wood growth of Tabebuia barbata (E. Mey.) Sandwith (Bignoniaceae) and Vatairea guianensis Aubl. (Fabaceae) in Central Amazonian black-water (igapó) and white-water (várzea) floodplain forests. Trees 23(1), 127–134, https://doi.org/10.1007/s00468-008-0261-4 (2009). (PMID: 10.1007/s00468-008-0261-4)
Andrade, V. L. C. et al. Growth rings of Brazil nut trees (Bertholletia excelsa) as a living record of historical human disturbance in Central Amazonia. PLOS ONE 14(4), e0214128, https://doi.org/10.1371/journal.pone.0214128 (2019). (PMID: 10.1371/journal.pone.0214128)
Neves, J. R. D., Piedade, M. T. F., Resende, A. F., Feitosa, Y. O. & Schöngart, J. Impact of climatic and hydrological disturbances on blackwater floodplain forests in Central Amazonia. Biotropica 51, 484–489, https://doi.org/10.1111/btp.12667 (2019). (PMID: 10.1111/btp.12667)
Luque, R., Sousa, H. C. & Kraus, J. E. Métodos de coloração de Roeser (1972) - modificado - e Kropp (1972) visando a substituição do azul de astra por azul de alcião 8GS ou 8GX. Acta Bot. Bras. 10, 199–212, https://doi.org/10.1590/S0102-33061996000200001 (1996). (PMID: 10.1590/S0102-33061996000200001)
Berlyn, G. & Miksche, J. Botanical Microtechnique and Cytochemistry. (The Iowa State University Press, Ames (1976).
IAWA Committee International Association of Wood Anatomists list of microscopic features of softwood identification. IAWA J. 25, 1–70 (2004).
Coster, C. Zur Anatomie und Physiologie der Zuwachszonen und Jahresringbildung in den Tropen. Ann. Jard. Bot. Buitenzorg 37, 49–160 (1927).
Coster, C. Zur anatomie und physiologie der zuwachszonen-und jahresringbildung in den tropen II. Ann. Jard. Bot. Buitenzorg 38, 1–114 (1928).
Stahle, D. W., Mushove, P. T., Cleaveland, M. K., Roigc, F. & Haynesd, G. A. Management implications of annual growth rings in Pterocarpus angolensis from Zimbabwe. For. Ecol. Manag. 124, 217–229, https://doi.org/10.1016/S0378-1127(99)00075-4 (1999). (PMID: 10.1016/S0378-1127(99)00075-4)
Schöngart, J. et al. Management criteria for Ficus insipida Willd. (Moraceae) in Amazonian white-water floodplain forests defined by tree-ring analysis. Ann. For. Sci. 64, 657–664, https://doi.org/10.1051/forest:2007044 (2007). (PMID: 10.1051/forest:2007044)
Schöngart, J. G.-O. L. (GOL): a new concept towards sustainable forest management in Central Amazonian Várzea floodplains. For. Ecol. Manag. 256, 46–58, https://doi.org/10.1016/j.foreco.2008.03.037 (2008). (PMID: 10.1016/j.foreco.2008.03.037)
Spiegel, M. P. Estatística. (McGraw-Hill, São Paulo (1976).
Mendiburu, F. Agricolae: Statistical Procedures for Agricultural Research. Version 1.2-4. https://CRAN.R-project.org/package=agricolae . (Accessed 15 March 2019) (2016).
Damasceno-Junior, G. A., Semir, J., Santos, F. A. M. & Leitão-Filho, H. F. Structure, distribution of species and inundation in a riparian forest of Rio Paraguai. Pantanal, Brazil. Flora 200, 119–135, https://doi.org/10.1016/j.flora.2004.09.002 (2005). (PMID: 10.1016/j.flora.2004.09.002)
Arruda, W. S. et al. Inundation and Fire Shape the Structure of Riparian Forests in the Pantanal, Brazil. PloS One 11, e0156825, https://doi.org/10.1371/journal.pone.0156825 (2016). (PMID: 10.1371/journal.pone.01568254900580)
R Development Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, ISBN 3-900051-07-0. http://www.R-project.org/ . (Accessed 15 March 2019) (2019).
KNMI Climate Explorer. https://climexp.knmi.nl/select.cgi?id=someone%40somewhereandfield=cru_pre . (Accessed 15 March 2019).
National Oceanic Atmospheric Administration Download Climate Timeseries. http://www.esrl.noaa.gov/psd/gcos_wgsp/Timeseries/TNI . (Accessed 15 March 2019).
Stokes, M. A. & Smiley, T. L. An Introduction to Tree-ring Dating. (University of Chicago Press, Chicago (1968).
Pilcher, J. R. In Methods of dendrochronology, applications in the environmental sciences (eds. Cook, E. R. & Kairiukstis, L. A.) 40–51 (Kluwer (1990).
Fritts, H. C. Tree Rings and Climate. (Academic Press, London, (1976).
Schweingruber, F. H. Tree Rings - Basics and Applications of Dendrochronology. (Kluwer Academic Publishers, Dordrecht, (1988).
Brienen, R. J. et al. The potential of tree rings for the study of forest succession in southern Mexico. Biotropica 41(2), 186–195, https://doi.org/10.1111/j.1744-7429.2008.00462.x (2009). (PMID: 10.1111/j.1744-7429.2008.00462.x)
Baillie, M. G. L. & Pilcher, J. R. A simple cross-dating program for tree-ring research. Tree-rings Bull. 33, 7–14 (1973).
Cook, E. R. & Briffa, K. In Methods of Dendrochronology, Applications in the Environmental Sciences (eds. Cook, E. R. & Kairiukstis L. A.) 97–162 (Kluwer/IIASA (1990).
Swaine, M. D. & Whitemore, T. C. On the definition of ecological species groups in tropical rain forests. Vegetatio 75, 81–86, https://doi.org/10.1007/BF00044629 (1988). (PMID: 10.1007/BF00044629)
Miranda, E. M. D. & Valentim, J. F. Desempenho de doze espécies arbóreas nativas e introduzidas com potencial de uso múltiplo no estado do Acre, Brasil. Acta Amazon. 30(3), 471–471, https://doi.org/10.1590/1809-43922000303480 (2000). (PMID: 10.1590/1809-43922000303480)
Wittmann, F. et al. Manual of Trees from Central Amazonian Várzea Floodplains. (Inpa, Manaus (2010).
Nunes da Cunha, C. & Junk, W. J. Year-to-year changes in water level drive the invasion of Vochysia divergens in Pantanal grasslands. Appl. Veg. Sci. 7, 103–110, https://doi.org/10.1111/j.1654-109X.2004.tb00600.x (2004). (PMID: 10.1111/j.1654-109X.2004.tb00600.x)
Sokpon, N. & Biaou, S. H. The use of diameter distributions in sustained-use management of remnant forests in Benin: case of Bassila forest reserve in North Benin. For. Ecol. Manag. 161, 13–25, https://doi.org/10.1016/S0378-1127(01)00488-1 (2002). (PMID: 10.1016/S0378-1127(01)00488-1)
Gris, D. Monodominance of Erythrina fusca Lour.: influence of environmental factors, chemical ecology and dendroecology, PhD thesis, Universidade Federal de Mato Grosso do Sul (2017).
Granato-Souza, D. et al. Tree rings and rainfall in the equatorial Amazon. Clim. Dyn. 52(3-4), 1857–1869, https://doi.org/10.1007/s00382-018-4227-y (2019). (PMID: 10.1007/s00382-018-4227-y)
تواريخ الأحداث: Date Created: 20200227 Date Completed: 20200804 Latest Revision: 20210224
رمز التحديث: 20231215
مُعرف محوري في PubMed: PMC7042278
DOI: 10.1038/s41598-020-60402-x
PMID: 32099071
قاعدة البيانات: MEDLINE
الوصف
تدمد:2045-2322
DOI:10.1038/s41598-020-60402-x