دورية أكاديمية

Evaluation of chelating and cytoprotective activity of vanillin against the toxic action of mercuric chloride as an alternative for phytoremediation.

التفاصيل البيبلوغرافية
العنوان: Evaluation of chelating and cytoprotective activity of vanillin against the toxic action of mercuric chloride as an alternative for phytoremediation.
المؤلفون: da Silva JP; Laboratory of Microbiology and Molecular Biology, Department of Biological Chemistry, Regional University of Cariri - URCA, Rua Cel. Antônio Luís 1161, Pimenta, Crato, CE, 63105-000, Brazil., do S Costa M; Laboratory of Microbiology and Molecular Biology, Department of Biological Chemistry, Regional University of Cariri - URCA, Rua Cel. Antônio Luís 1161, Pimenta, Crato, CE, 63105-000, Brazil., Campina FF; Laboratory of Microbiology and Molecular Biology, Department of Biological Chemistry, Regional University of Cariri - URCA, Rua Cel. Antônio Luís 1161, Pimenta, Crato, CE, 63105-000, Brazil., Bezerra CF; Laboratory of Microbiology and Molecular Biology, Department of Biological Chemistry, Regional University of Cariri - URCA, Rua Cel. Antônio Luís 1161, Pimenta, Crato, CE, 63105-000, Brazil., de Freitas TS; Laboratory of Microbiology and Molecular Biology, Department of Biological Chemistry, Regional University of Cariri - URCA, Rua Cel. Antônio Luís 1161, Pimenta, Crato, CE, 63105-000, Brazil., Sousa AK; University Center UNILEAO, Juazeiro do Norte, CE, Brazil., Sobral Souza CE; University Center UNILEAO, Juazeiro do Norte, CE, Brazil., de Matos YMLS; Laboratory of Microbiology and Molecular Biology, Department of Biological Chemistry, Regional University of Cariri - URCA, Rua Cel. Antônio Luís 1161, Pimenta, Crato, CE, 63105-000, Brazil., Pereira-Junior FN; Federal University of Cariri, Juazeiro do Norte, CE, Brazil., Menezes IRA; Laboratory of Pharmacology and Molecular Chemistry, Regional University of Cariri - URCA, Crato, CE, Brazil., Coutinho HDM; Laboratory of Microbiology and Molecular Biology, Department of Biological Chemistry, Regional University of Cariri - URCA, Rua Cel. Antônio Luís 1161, Pimenta, Crato, CE, 63105-000, Brazil., Rocha JE; Laboratory of Microbiology and Molecular Biology, Department of Biological Chemistry, Regional University of Cariri - URCA, Rua Cel. Antônio Luís 1161, Pimenta, Crato, CE, 63105-000, Brazil. janainaesmeraldo@gmail.com.
المصدر: Environmental geochemistry and health [Environ Geochem Health] 2021 Apr; Vol. 43 (4), pp. 1609-1616. Date of Electronic Publication: 2020 Mar 04.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Kluwer Academic Publishers Country of Publication: Netherlands NLM ID: 8903118 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1573-2983 (Electronic) Linking ISSN: 02694042 NLM ISO Abbreviation: Environ Geochem Health Subsets: MEDLINE
أسماء مطبوعة: Publication: 1999- : Dordrecht : Kluwer Academic Publishers
Original Publication: Kew, Surrey : Science and Technology Letters, 1985-
مواضيع طبية MeSH: Biodegradation, Environmental*, Benzaldehydes/*chemistry , Chelating Agents/*chemistry , Mercuric Chloride/*toxicity, Antioxidants/chemistry ; Ferric Compounds/chemistry ; Humans ; Lactuca ; Mercury ; Metals, Heavy/analysis ; Seeds/chemistry ; Vegetables
مستخلص: Mercury is widely found in nature, however, in low concentrations, but anthropological activities have increased its concentration considerably. This causes various environmental hazards and human health. Many substances are capable of reversing the toxicity of mercuric chloride in the environment. The aim of the present study was to determine the chelating effect of vanillin, as well as to evaluate its capacity for cytoprotection in prokaryotic and eukaryotic plant models. Chelating activity was determined from vanillin's ability to reduce iron III ions. To evaluate cytoprotection in a unicellular prokaryotic and eukaryotic model, Escherichia coli and Candida albicans, respectively, were used. And to evaluate the cytoprotective activity in vegetables, lettuce seeds were submitted to different concentrations of mercuric chloride and its association with the sub-allelopathic concentration of vanillin (32 µg/mL). Vanillin has been found to have antioxidant activity as it can reduce iron III ions. The use of vanillin also allows for better growth and development of Lactuca sativa seed root and stem, also allowing better preservation of its biochemical structures. These results are quite important, as environmental contamination by heavy metals has increased dramatically and finding a viable alternative to grow vegetables in contaminated areas is very valid.
References: Araújo, B. F., et al. (2010). Distribuição de Hg total e suas associações com diferentes suportes geoquímicos em sedimentos marinhos na margem continental brasileira: Bacia de Campos – Rio de Janeiro. Quimica Nova, 33(3), 501–507.
Bezerra, C. F., et al. (2017). Vanillin selectively modulates the action of antibiotics against resistant bacteria. Microbial Pathogenesis, 113, 265–268.
Brasil - Ministério da Agricultura. Departamento de produção vegetal, divisão de sementes e mudas. (2009). Regras para análise de sementes. LANARV/SNAD/MA, Brasília. (2009). Regras para análise de sementes. Brasília: LANARV/SNAD/MA.
Clarkson, T. W., & Magos, L. (2006). The toxicology of mercury and its chemical compounds. Critical Reviews in Toxicology, 36(7), 609–662.
Conceição, G. (2004). Distribuição De Elementos-Traço Em Sedimentos Superficiais Do Rio Itajaí Mirim Em Santa Catarina. Dissertação de Mestrado: Universidade Regional De Blumenau, Blumenau-Sc.
Cope, W. G., et al. (2010). Classes of toxicants: use classes. In E. Hodgson (Ed.), A textbook of modern toxicology (pp. 49–74). Hoboken: Wiley.
Coutinho, H. D. M., et al. (2008). Enhancement of the antibiotic activity against a multiresistant Escherichia coli by Mentha arvensis and chlorpromazine. Chemotherapy, 54, 328–330.
Coutinho, H. D. M., et al. (2017). Stryphnodendron rotundifolium mart As an adjuvante for the plant germination and development under toxic concentrations of HgCl2 and AlCl2. Water, Air, and Soil Pollution, 228, 424.
Cunha, F. A. B., et al. (2016). Cytoprotective effect of Eugenia uniflora L. against the waste contaminant mercuric chloride. The Arabian Journal of Chemistry, 18, 1.
Das, S. K., Patra, J. K., & Thatoi, H. (2016). Antioxidative response to abiotic and biotic stresses in mangrove plants: A review. International Review of Hydrobiology, 101, 3–19.
Daugsch, A., & Pastore, G. (2005). Obtenção de vanilina: oportunidade biotecnológica. Química Nova, 28, 642–645.
Derant, S., & Karran, P. (2003). Vanillins a novel family of DNA-PK inhibitors. Nucleic Acids Research, 31(19), 5501.
EPA – United States Environmental Protection Agency. (1998). A Citi en’s uide To Phytoremediation. Washington, D.C.: U.S. Environmental Protection Agency.
Figueredo, F. G., et al. (2016). Potential assessment cytoprotective against toxic effect of chloride of mercury and antioxidant Lygodium venustum sw (lygodiaceae). Rev. Interfaces, 39, 44–49.
Fiorenza, M., et al. (2016). Análise fitoquímica e atividade alelopática de extratos de Eragrostis plana Nees (capimannoni). Iheringia, 71(2), 193–200.
Halliwel, B., et al. (1995). The characterization of antioxidants. Food and Chemical Toxicology, 33(7), 601–617.
Hu, Y., & Cheng, H. (2012). Mercury risk from fluorescent lamps in China: Current status and future perspective. Environment International, 44, 141–150.
Jiang, W., Liu, D., & Liu, X. (2001). Effects of copper on root growth, cell division, and nucleolus of Zea mays. Biologia Plantarum, 44, 105–109.
Khanam, S. (2014). Heavy metal contamination and health hazards: A review. Trends in Biotechnology, 1, 5–8.
Kim, S. A., & Rhee, M. S. (2016). Highly enhanced bactericidal effects of medium chain fattyacids (caprylic, capric, and lauric acid) combined with edible plant essential oils (carvacrol, eugenol, β-resorcylic acid, trans-cinnamaldehyde, thymol, and vanillin) against Escherichia coli O157: H7. Food Control, 60, 447–454.
Leite, N. F., et al. (2016). Citoprotective effect of Eugenia jambolana and Psidium myrsinites DC. A. against the lipid peroxidation induced by iron II. Acta Toxicológica Argentina, 24, 187–192.
Leite, N. F., et al. (2017). Reduction of the toxic effect of mercuric chloride by chelating effect of Psidium brownianum Mart. ex DC. International Biodeterioration and Biodegradation, 119, 538–541.
Liang, P., et al. (2015). Human exposure to mercury in a compact fluorescent lamp manufacturing area: By food (rice and fish) consumption and occupational exposure. Environmental Pollution, 198, 126–132.
Lima, C. N. F., et al. (2014). Ação protetora de Duguetia furfuracea (A. St.-Hil.) Saff.contra a toxicidade do cloreto de mercúrio em Escherichia coli. Rev. Cubana Plantas Med., 19, 79–188.
Liu, D., Jiang, W., & Gao, X. (2003). Effects of cadmium on root growth, cell division and nucleoli in root tip cells of garlic. Biologia Plantarum, 47, 79–83.
Maciel, J. C., et al. (2017). Interferência de plantas daninhas no crescimento da cultura do trigo. Revista de Agricultura Neotropical, 4(3), 23–29.
Makni, M., et al. (2011). Evolution of the antioxidant, anti-inflammatory and hepato protective properties of vanillin in cabon tetrachloride-treated rats. European journal of pharmaco lpgy., 668(1–2), 133–139.
Mohamad Yusof, N. N., Tanioka, E., & Kobayashi, T. (2014). Molecularly imprinted polymer particles having coordinated hydrogen bonding in covalent-imprinting for efficient recognition towards vanillin. Separation and Purification Technology, 122, 341–349.
Oliveira, R. C. B., & Marins, R. V. (2011). Dinâmica de metais-traço em solo e ambiente sedimentar estuarino como um fator determinante no aporte desses contaminantes para o ambiente aquático: Revisão. Revista Virtual de Quimica, 3, 88–102.
Organização Pan-Americana da Saúde. (2011). Cooperação técnica entre Brasil, Bolívia e Colômbia: teoria e prática para o fortalecimento da vigilância em saúde de populações expostas a mercúrio. Brasília: Organização Pan-Americana da Saúde.
Puntel, R. L., et al. (2005). Krebs cycle intermediates modulate thiobarbituric acid reactive species (tbars) production in rat brain in vitro. Neurochemical Research, 30, 225–235.
Radha, J., et al. (2010). Effect on amylase activity and growth parameters due to metal toxicity of iron, copper and Zinc. Acta Physiologiae Plantarum, 32, 979–986.
Rice, K. M., et al. (2014). Environmental mercury and its toxic effects. Journal of Preventive Medicine and Public Health, 47(2), 74–83.
Rocha, J. E., et al. (2018). Identification of the gallic acid mechanism of action on mercuric chloride toxicity reduction using infrared spectroscopy and antioxidant assays. International Biodeterioration and Biodegradation, 141, 24.
Rocha, J. E., et al. (2019). mercuric chloride phytotoxicity reduction using antioxidative mechanisms evidenced by caffeic acid FTIR. Applied Geochemistry, 104, 109–115.
Shadomy, S., et al. (1985). Laboratory studies with antifungal agents: susceptibility test and bioassay. In E. H. Lennette, A. Ballows, W. J. Hausler Jr., & H. J. Shadomy Jr. (Eds.), Manual of clinical microbiology (4th ed.). Washington: AmericanSociety of Microbiology.
Shaughnessya, D. T., Setzer, R. W., & Demarinic, D. M. (2011). The antimutagenic effect of vanillin and cinnamaldehyde on spontaneous mutation in salmonella TA104 is due to a reduction in mutations at. Gs but not sites. Mutation Research, 480–481(1), 55–69.
Sobral-Souza, C. E., et al. (2014). Cytoprotective effect against mercuric chloride and bioinsecticidal activity of Eugenia jambolana Lam. The Arabian Journal of Chemistry, 7, 165–170.
Sobral-Souza, C. E., et al. (2019a). Phytotoxicity reduction of the mercuric chloride effect by natural products from Eugenia jambolana Lam.: A new strategy against the toxic metal pollution. Ecotoxicology and Environmental Safety, 170, 461–467.
Sobral-Souza, C. E., et al. (2019b). Psidium guajava bioactive product chemical analysis and heavy metal toxicity reduction. Chemosphere, 9, 135.
Stroescu, M., et al. (2015). Chitosan-vanillin composites with antimicrobial properties. Food Hydrocolloid, 48, 62–71.
Tai, A., et al. (2011). Evaluation of anti-oxidant activity of vanillin by using multiple antioxidant assays. Biochimica et Biophysica Acta, 1810(2), 170–177.
Tavares, S. R. L., Oliveira, S. A., & Salgado, C. M. (2013). Avaliação de espécies vegetais na fitorremediação de solos contaminados por metais pesados. Holos, 5, 80–97.
Tinôco, A. A. P., et al. (2010). Avaliação de contaminação por mercúrio em Descoberto. MG. Engenharia Sanitária e Ambiental, 15(4), 305–314.
Wu, S. L., et al. (2009). Vanillin improves and prevents trinitro benzene sulfonic acid-induced colitis in mice. Journal of Pharmacology and Experimental Therapeutics, 33(2), 370–376.
Zahir, F., et al. (2005). Low dose mercury toxicity and human health. Environmental Toxicology and Pharmacology, 20(2), 351–360.
Zeitouni, C. F. (2003). Eficiência De Espécies Vegetais Como Fitoextratoras De Cádmio, Chumbo, Cobre, Níquel E Zinco De Um Latossolo Vermelho Amarelo Distrófico. Instituto Agronômico De Campinas. Dissertação de Metrado.
فهرسة مساهمة: Keywords: Environmental; Phytoremediation; Vanillin
المشرفين على المادة: 0 (Antioxidants)
0 (Benzaldehydes)
0 (Chelating Agents)
0 (Ferric Compounds)
0 (Metals, Heavy)
53GH7MZT1R (Mercuric Chloride)
CHI530446X (vanillin)
FXS1BY2PGL (Mercury)
تواريخ الأحداث: Date Created: 20200305 Date Completed: 20210510 Latest Revision: 20240109
رمز التحديث: 20240109
DOI: 10.1007/s10653-020-00538-x
PMID: 32130595
قاعدة البيانات: MEDLINE
الوصف
تدمد:1573-2983
DOI:10.1007/s10653-020-00538-x