دورية أكاديمية

Highly regional population structure of Spondyliosoma cantharus depicted by nuclear and mitochondrial DNA data.

التفاصيل البيبلوغرافية
العنوان: Highly regional population structure of Spondyliosoma cantharus depicted by nuclear and mitochondrial DNA data.
المؤلفون: Neves A; Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal. amneves@fc.ul.pt.; MARE - Marine and Environmental Sciences Centre, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal. amneves@fc.ul.pt., Vieira AR; Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal.; MARE - Marine and Environmental Sciences Centre, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal., Sequeira V; Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal.; MARE - Marine and Environmental Sciences Centre, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal., Paiva RB; MARE - Marine and Environmental Sciences Centre, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal., Gordo LS; Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal.; MARE - Marine and Environmental Sciences Centre, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal., Paulo OS; Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal.; cE3c - Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal.
المصدر: Scientific reports [Sci Rep] 2020 Mar 04; Vol. 10 (1), pp. 4063. Date of Electronic Publication: 2020 Mar 04.
نوع المنشور: Journal Article; Research Support, Non-U.S. Gov't
اللغة: English
بيانات الدورية: Publisher: Nature Publishing Group Country of Publication: England NLM ID: 101563288 Publication Model: Electronic Cited Medium: Internet ISSN: 2045-2322 (Electronic) Linking ISSN: 20452322 NLM ISO Abbreviation: Sci Rep Subsets: MEDLINE
أسماء مطبوعة: Original Publication: London : Nature Publishing Group, copyright 2011-
مواضيع طبية MeSH: Databases, Nucleic Acid* , Haplotypes*, DNA, Mitochondrial/*genetics , Sea Bream/*genetics, Animals ; Phylogeography ; Sea Bream/classification
مستخلص: Resolution of population structure represents an effective way to define biological stocks and inform efficient fisheries management. In the present study, the phylogeography of the protogynous sparid Spondyliosoma cantharus, in the East Atlantic and Mediterranean Sea, was investigated with nuclear (S7) and mitochondrial (cytochrome b) DNA markers. Significant divergence of four regional genetic groups was observed: North Eastern Atlantic, Mediterranean Sea, Western African Transition (Cape Verde) and Gulf of Guinea (Angola). The two southern populations (Cape Verde and Angola) each comprised reciprocally monophyletic mtDNA lineages, revealed low levels of diversity in Cape Verde and high diversity for Angola despite being represented by only 14 individuals. A complete divergence between North Atlantic and Mediterranean populations was depicted by the mitochondrial marker, but a highly shared nuclear haplotype revealed an incomplete lineage sorting between these regions. Bayesian skyline plots and associated statistics revealed different dynamics among the four regions. Cape Verde showed no expansion and the expansion time estimated for Angola was much older than for the other regions. Mediterranean region seems to have experienced an early population growth but has remained with a stable population size for the last 30000 years while the North Atlantic population has been steadily growing. The lack of genetic structuring within these regions should not be taken as evidence of demographic panmixia in light of potential resolution thresholds and previous evidence of intra-regional phenotypic heterogeneity.
References: Begg, G. A., Friedland, K. D. & Pearce, J. B. Stock identification and its role in stock assessment and fisheries management: an overview. Fish. Res. 43, 1–8 (1999). (PMID: 10.1016/S0165-7836(99)00062-4)
Abaunza, P. et al. Stock identity of horse mackerel (Trachurus trachurus) in the Northeast Atlantic and Mediterranean Sea: integrating the results from different stock identification approaches. Fish. Res. 89, 196–209 (2008). (PMID: 10.1016/j.fishres.2007.09.022)
Welch, D. et al. Integrating different approaches in the definition of biological stocks: a northern Australian multi-jurisdictional fisheries example using grey mackerel. Scomberomorus semifasciatus. Mar. Policy 55, 73–80 (2015). (PMID: 10.1016/j.marpol.2015.01.010)
Ward, R. D. Genetics in fisheries management. Hydrobiologia 420, 191–201 (2000). (PMID: 10.1023/A:1003928327503)
Gopalakrishnan, A., Jayasankar, J., Shah, P. & Shalin, S. Genetic stock characterization of fish using molecular markers in Course manual summer school on advanced methods for fish stock assessment and fisheries management. Lecture Note Series No. 2/2017 308–316 (CMFRI, Kochi, 2017).
Bauchot, M. L. & Hureau, J. C. Sparidae in: Fishes of the North-Eastern Atlantic and the Mediterranean (eds. Whitehead, P. J. P., Bauchot, M. L., Hureau, J. C., Nielsen, J. & Tortonese, E.) 883–907 (UNESCO, 1986).
FAO Fisheries and Aquaculture Department. http://www.fao.org/fishery/statistics/collections/en (2010–2018).
Neves, A., Vieira, A. R., Sequeira, V., Paiva, R. B. & Gordo, L. S. Modelling the growth of a protogynous sparid species, Spondyliosoma cantharus (Teleostei, Sparidae). Hydrobiologia 797, 265–275 (2017). (PMID: 10.1007/s10750-017-3188-1)
Russell, B., Pollard, D. & Carpenter, K. E. Spondyliosoma cantharus. The IUCN Red List of Threatened Species 2014: e.T170258A1303321. 10.2305/IUCN.UK.2014-3.RLTS.T170258A1303321.en (2014).
Pinder, A. C., Velterop, R., Cooke, S. J. & Britton, J. R. Consequences of catch-and-release angling for black bream Spondyliosoma cantharus, during the parental care period: implications for management. ICES J. Mar. Sci. 74, 254–62 (2017). (PMID: 10.1093/icesjms/fsw151)
Neves, A., Vieira, A. R., Sequeira, V., Paiva, R. B. & Gordo, L. S. Phenotypic changes in the body of black seabream, Spondyliosoma cantharus (Teleostei: Sparidae), along the eastern Atlantic. Estuar. Coast. Shelf. Sci. 214, 31–37 (2018). (PMID: 10.1016/j.ecss.2018.09.009)
Neves, A. et al. Otolith shape and isotopic ratio analyses as a tool to study Spondyliosoma cantharus population structure. Mar. Environ. Res. 143, 93–100 (2019). (PMID: 10.1016/j.marenvres.2018.11.012)
Cadrin, S. X. & Secor, D. H. Accounting for spatial population structure in stock assessment: past, present, and future in: The future of fisheries science in North America (eds. Beamish, R. J. & Rothschild, B. J.) 405–426 Fish Fish. Ser. 31 (Springer, 2009).
Ramos-Onsins, S. E. & Rozas, J. Statistical properties of new neutrality tests against population growth. Mol. Biol. Evol. 19, 2092–2100 (2002). (PMID: 10.1093/oxfordjournals.molbev.a0040341244680112446801)
Patarnello., T., Volckaert, F. & Castilho, R. Pillars of Hercules: is the Atlantic–Mediterranean transition a phylogeographical break? Mol. Ecol. 16, 4426–4444 (2007). (PMID: 10.1111/j.1365-294X.2007.03477.x1790822217908222)
Bargelloni, L. et al. Discord in the family Sparidae (Teleostei): divergent phylogeographical patterns across the Atlantic-Mediterranean divide. J. Evol. Biol. 16, 1149–1158 (2003). (PMID: 10.1046/j.1420-9101.2003.00620.x1464040614640406)
Bargelloni, L. et al. The Atlantic–Mediterranean transition: Discordant genetic patterns in two seabream species, Diplodus puntazzo (Cetti) and Diplodus sargus (L.). Mol. Phylogenet. Evol. 36, 523–535 (2005). (PMID: 10.1016/j.ympev.2005.04.0171593695715936957)
Ball, A. O., Beal, M. G., Chapman, R. W. & Sedberry, G. R. Population structure of red porgy, Pagrus pagrus, in the Atlantic Ocean. Mar. Biol. 150, 1321–1332 (2007). (PMID: 10.1007/s00227-006-0425-y)
Angiulli, E., Sola, L., Ardizzone, G., Fassatoui, C. & Rossi, A. R. Phylogeography of the common pandora Pagellus erythrinus in the central Mediterranean Sea: sympatric mitochondrial lineages and genetic homogeneity. Mar. Biol. Res. 12, 4–15 (2016). (PMID: 10.1080/17451000.2015.1069355)
González-Wangüemert, M., Froufe, E., Pérez-Ruzafa, A. & Alexandrino, P. Phylogeographical history of the white seabream Diplodus sargus (Sparidae): Implications for insularity. Mar. Biol. Res. 7, 250–260 (2011). (PMID: 10.1080/17451000.2010.499438)
Palumbi, S. R., Cipriano, F. & Hare, M. P. Predicting nuclear gene coalescence from mitochondrial data: the three-times rule. Evolution 55, 859–868 (2001). (PMID: 10.1554/0014-3820(2001)055[0859:PNGCFM]2.0.CO;21143064611430646)
Luzier, C. W. & Wilson, R. R. Analysis of mtDNA haplotypes of kelp bass tests for sibling-dominated recruitment near marine protected areas of the California Channel Islands. Mar. Ecol. Prog. Ser. 277, 221–230 (2004). (PMID: 10.3354/meps277221)
Schefuß, E., Sinninghe Damsté, J. S. & Jansen, J. H. F. Forcing of tropical Atlantic sea surface temperatures during the mid‐Pleistocene transition. Paleoceanography 19, PA4029 (2004). (PMID: 10.1029/2003PA000892)
Ballard, J. W. O. & Whitlock, M. C. The incomplete natural history of mitochondria. Mol. Ecol. 13, 729–744 (2004). (PMID: 10.1046/j.1365-294X.2003.02063.x)
Reid, K. et al. Secondary contact and asymmetrical gene flow in a cosmopolitan marine fish across the Benguela upwelling zone. Heredity 117, 307–315 (2016). (PMID: 10.1038/hdy.2016.5150619185061918)
Bernatchez, L., Dodson, J. J. & Boivin, S. Population bottlenecks: influence on mitochondrial DNA diversity and its effect in coregonine stock discrimination. J. Fish Biol. 35, 233–244 (1989). (PMID: 10.1111/j.1095-8649.1989.tb03066.x)
Cunha, R. L., Lopes, E. P., Reis, D. M. & Castilho, R. Genetic structure of Brachidontes puniceus populations in Cape Verde archipelago shows signature of expansion during the last glacial maximum. J. Mollus. Stud. 77, 175–181 (2011). (PMID: 10.1093/mollus/eyr001)
FAO Fishery and aquaculture country profiles. Cabo Verde (2008) country profile fact sheets in FAO Fisheries and Aquaculture Department, http://www.fao.org/fishery/facp/CPV/en (2005–2018).
Smith, P. J. Genetic diversity of marine fisheries resources: possible impacts of fishing. FAO Fisheries Technical Paper No. 344 (Rome, FAO, 1994).
Ho, S. Y., Phillips, M. J., Cooper, A. & Drummond, A. J. Time dependency of molecular rate estimates and systematic overestimation of recent divergence times. Mol. Biol. Evol. 22, 1561–1568 (2005). (PMID: 10.1093/molbev/msi1451581482615814826)
Ho, S. Y. & Shapiro, B. Skyline‐plot methods for estimating demographic history from nucleotide sequences. Mol. Ecol. Resour. 11, 423–434 (2011). (PMID: 10.1111/j.1755-0998.2011.02988.x2148120021481200)
Subramanian, S. & Lambert, D. M. Time dependency of molecular evolutionary rates? Yes and no. Genome Biol. Evol. 3, 1324–1328 (2011). (PMID: 10.1093/gbe/evr1082201633622016336)
Raventós, N. & Macpherson, E. Planktonic larval duration and settlement marks on the otoliths of Mediterranean littoral fishes. Mar. Biol. 138, 1115–1120 (2001). (PMID: 10.1007/s002270000535)
Faurby, S. & Barber, P. H. Theoretical limits to the correlation between pelagic larval duration and population genetic structure. Mol. Ecol. 21, 3419–3432 (2012). (PMID: 10.1111/j.1365-294X.2012.05609.x2257481122574811)
Conover, D. O., Clarke, L. M., Munch, S. B. & Wagner, G. N. Spatial and temporal scales of adaptive divergence in marine fishes and the implications for conservation. J. Fish Biol. 69, 21–47 (2006). (PMID: 10.1111/j.1095-8649.2006.01274.x)
Kochzius, M. Trends in fishery genetics in: The future of fisheries science in North America (eds. Beamish, R. J. & Rothschild, B. J.). Fish Fish. Ser. 31, 453–493 (Springer, Dordrecht, 2009).
Marin, K., Coon, A., Carson, R., Debes, P. V. & Fraser, D. J. Striking phenotypic variation yet low genetic differentiation in sympatric lake trout (Salvelinus namaycush). PLoS ONE 11, e0162325 (2016). (PMID: 10.1371/journal.pone.01623252768001927680019)
Vieira, A. R. et al. Genetic and morphological variation of the forkbeard, Phycis phycis (Pisces, Phycidae): evidence of panmixia and recent population expansion along its distribution area. PLoS ONE 11, e0167045 (2016). (PMID: 10.1371/journal.pone.016704551528305152830)
Chow, S., Hazama, K. & Universal, P. C. R. primers for S7 ribosomal protein gene introns in fish. Mol. Ecol. 7, 1255–1256 (1998). (PMID: 97340839734083)
Thompson, J. D., Higgins, D. G. & Gibson, T. J. CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic. Acids. Res. 22, 4673–4680 (1994). (PMID: 10.1093/nar/22.22.467379844177984417)
Larkin, M. A. et al. Clustal W and Clustal X Version 2.0. Bioinformatics 23, 2947–2948 (2007). (PMID: 10.1093/bioinformatics/btm4041784603617846036)
Hall, T. A. BioEdit: a user-friendly biological sequence alignment editor and analysis program for windows 95/98/NT. Nucleic. Acids. Symp. Ser. 41, 95–98 (1999).
Chang, C.-T. et al. Mixed Sequence Reader: A program for analyzing dna sequences with heterozygous base calling. Sci. World J. 2012, 1–10 (2012).
Stephens, M., Smith, N. J. & Donnelly, P. A. new statistical method for haplotype reconstruction from population data. Am. J. Hum. Genet. 68, 978–989 (2001). (PMID: 10.1086/3195011125445411254454)
Stephens, M. & Donnelly, P. A. comparison of Bayesian methods for haplotype reconstruction from population genotype data. Am. J. Hum. Genet. 73, 1162–1169 (2003). (PMID: 10.1086/3793781457464514574645)
Stephens, M. & Scheet, P. Accounting for decay of linkage disequilibrium in haplotype inference and missing-data imputation. Am. J. Hum. Genet. 76, 449–462 (2005). (PMID: 10.1086/4285941570022915700229)
Leigh, J. W. & Bryant, D. PopART: Full-feature software for haplotype network construction. Methods Ecol. Evol. 6, 1110–1116 (2015). (PMID: 10.1111/2041-210X.12410)
Clement, M., Snell, Q., Walke, P., Posada, D. & Crandall, K. TCS: estimating gene genealogies. Proc. 16th Int. Parallel Distrib. Process Symp. 2, 184 (2002).
Excoffier, L., Smouse, P. E. & Quattr, J. M. Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131, 479–491 (1992). (PMID: 16442821644282)
Excoffier, L. & Lischer, H. E. L. An integrated software package for population genetics data analysis. Mol. Ecol. Resour. 10, 564–67 (2010). (PMID: 10.1111/j.1755-0998.2010.02847.x)
Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. Roy. Stat. Soc. B. Met. 57, 289–300 (1995).
Mantel, N. The detection of disease clustering and a generalized regression approach. Cancer Res. 27, 209–220 (1967).
Smouse, P. E., Long, J. C. & Sokal, R. R. Multiple regression and correlation extensions of the Mantel Test of matrix correspondence. Syst. Zool. 35, 627–632 (1986). (PMID: 10.2307/2413122)
Tajima, F. Evolutionary relationship of DNA sequences in finite populations. Genetics 105, 437–460 (1983). (PMID: 12021671202167)
Nei, M. Molecular evolutionary genetics (Columbia University Press, 1987).
Wickham, H. ggplot2: Elegant graphics for data analysis (Springer-Verlag, 2009).
R Core Team. R: a language and environment for statistical computing. r foundation for statistical computing. http://www.R-project.org/ (2015).
Tajima, F. The effect of change in population size on DNA polymorphism. Genetics 123, 597–601 (1989). (PMID: 25993692599369)
Fu, Y. X. Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection. Genetics 147, 915–25 (1997). (PMID: 93356239335623)
Paradis, E. pegas: an R package for population genetics with an integrated-modular approach. Bioinformatics 26, 419–420 (2010). (PMID: 10.1093/bioinformatics/btp696)
Rogers, A. R. & Harpending, H. C. Population growth makes waves in the distribution of pairwise genetic differences. Mol. Biol. Evol. 9, 552–569 (1992). (PMID: 13165311316531)
Yang, C., Lian, T., Wang, Q.-X., Huang, Y. & Xiao, H. Preliminary study of genetic diversity and population structure of the Relict Gull Larus relictus (Charadriiformes Laridae) using mitochondrial and nuclear genes. Mitochondr. DNA 27, 4246–4249 (2016). (PMID: 10.3109/19401736.2015.1022759)
Neves, A., Vieira, A. R., Sequeira, V., Paiva, R. B. & Gordo, L. S. Insight on reproductive strategy in Portuguese waters of a commercial protogynous species, the black seabream Spondyliosoma cantharus (Sparidae). Fish. Res. 206, 85–95 (2018). (PMID: 10.1016/j.fishres.2018.05.004)
Drummond, A. J., Rambaut, A., Shapiro, B. & Pybus, O. G. Bayesian coalescent inference of past population dynamics from molecular sequences. Mol. Biol. Evol. 22, 1185–1192, https://doi.org/10.1093/molbev/msi103 (2005). (PMID: 10.1093/molbev/msi103)
Drummond, A. J., Suchard, M. A., Xie, D. & Rambaut, A. Bayesian phylogenetics with BEAUti and the BEAST 1.7. Mol. Biol. Evol. 29, 1969–1973 (2012). (PMID: 10.1093/molbev/mss07534080703408070)
Kalyaanamoorthy, S., Minh, B. Q., Wong, T. K. F., von Haeseler, A. & Jermiin, L. S. ModelFinder: fast model selection for accurate phylogenetic estimates. Nat. Methods 14, 587–589 (2017). (PMID: 10.1038/nmeth.428554532455453245)
Rambaut, A., Drummond, A. J., Xie, D., Baele, G. & Suchard, M. A. Posterior summarisation in Bayesian phylogenetics using Tracer 1.7. Syst. Biol. 67, 901–904 (2018). (PMID: 10.1093/sysbio/syy03261015846101584)
المشرفين على المادة: 0 (DNA, Mitochondrial)
تواريخ الأحداث: Date Created: 20200306 Date Completed: 20201112 Latest Revision: 20210304
رمز التحديث: 20231215
مُعرف محوري في PubMed: PMC7055218
DOI: 10.1038/s41598-020-61050-x
PMID: 32132605
قاعدة البيانات: MEDLINE
الوصف
تدمد:2045-2322
DOI:10.1038/s41598-020-61050-x