دورية أكاديمية

Using antagonistic pleiotropy to design a chemotherapy-induced evolutionary trap to target drug resistance in cancer.

التفاصيل البيبلوغرافية
العنوان: Using antagonistic pleiotropy to design a chemotherapy-induced evolutionary trap to target drug resistance in cancer.
المؤلفون: Lin KH; Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA., Rutter JC; Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA., Xie A; Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA., Pardieu B; Université de Paris, Génomes, Biologie Cellulaire et Thérapeutique U944, INSERM, CNRS, Paris, France., Winn ET; Division of Applied Mathematics, Brown University, Providence, RI, USA., Bello RD; Université de Paris, Génomes, Biologie Cellulaire et Thérapeutique U944, INSERM, CNRS, Paris, France.; Department of Hematology, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil., Forget A; Université de Paris, Génomes, Biologie Cellulaire et Thérapeutique U944, INSERM, CNRS, Paris, France., Itzykson R; Université de Paris, Génomes, Biologie Cellulaire et Thérapeutique U944, INSERM, CNRS, Paris, France.; Service Hématologie Adultes, AP-HP, Hôpital Saint-Louis, Paris, France., Ahn YR; Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA., Dai Z; Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA., Sobhan RT; Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA., Anderson GR; Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA., Singleton KR; Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA., Decker AE; Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA., Winter PS; Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA., Locasale JW; Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA., Crawford L; Department of Biostatistics, Brown University, Providence, RI, USA., Puissant A; Université de Paris, Génomes, Biologie Cellulaire et Thérapeutique U944, INSERM, CNRS, Paris, France. alexandre.puissant@inserm.fr., Wood KC; Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA. kris.wood@duke.edu.
المصدر: Nature genetics [Nat Genet] 2020 Apr; Vol. 52 (4), pp. 408-417. Date of Electronic Publication: 2020 Mar 16.
نوع المنشور: Journal Article; Research Support, N.I.H., Extramural; Research Support, Non-U.S. Gov't; Research Support, U.S. Gov't, Non-P.H.S.
اللغة: English
بيانات الدورية: Publisher: Nature Pub. Co Country of Publication: United States NLM ID: 9216904 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1546-1718 (Electronic) Linking ISSN: 10614036 NLM ISO Abbreviation: Nat Genet Subsets: MEDLINE
أسماء مطبوعة: Original Publication: New York, NY : Nature Pub. Co., c1992-
مواضيع طبية MeSH: Drug Resistance, Neoplasm/*genetics , Genetic Pleiotropy/*genetics , Neoplasms/*genetics, Adaptation, Physiological/genetics ; Animals ; Biological Evolution ; CRISPR-Cas Systems/genetics ; Cell Line ; Cell Line, Tumor ; Environment ; Genetic Fitness/genetics ; HEK293 Cells ; HL-60 Cells ; Humans ; Mice ; Nuclear Proteins/genetics ; Phenotype ; Quantitative Trait Loci/genetics ; Transcription Factors/genetics
مستخلص: Local adaptation directs populations towards environment-specific fitness maxima through acquisition of positively selected traits. However, rapid environmental changes can identify hidden fitness trade-offs that turn adaptation into maladaptation, resulting in evolutionary traps. Cancer, a disease that is prone to drug resistance, is in principle susceptible to such traps. We therefore performed pooled CRISPR-Cas9 knockout screens in acute myeloid leukemia (AML) cells treated with various chemotherapies to map the drug-dependent genetic basis of fitness trade-offs, a concept known as antagonistic pleiotropy (AP). We identified a PRC2-NSD2/3-mediated MYC regulatory axis as a drug-induced AP pathway whose ability to confer resistance to bromodomain inhibition and sensitivity to BCL-2 inhibition templates an evolutionary trap. Across diverse AML cell-line and patient-derived xenograft models, we find that acquisition of resistance to bromodomain inhibition through this pathway exposes coincident hypersensitivity to BCL-2 inhibition. Thus, drug-induced AP can be leveraged to design evolutionary traps that selectively target drug resistance in cancer.
التعليقات: Comment in: Nat Genet. 2020 Apr;52(4):361-362. doi: 10.1038/s41588-020-0608-3. (PMID: 32246131)
References: Kawecki, T. J. & Ebert, D. Conceptual issues in local adaptation. Ecol. Lett. 7, 1225–1241 (2004). (PMID: 10.1111/j.1461-0248.2004.00684.x)
Singer, M. C. & Parmesan, C. Lethal trap created by adaptive evolutionary response to an exotic resource. Nature 557, 238–241 (2018). (PMID: 10.1038/s41586-018-0074-629743688)
Schlaepfer, M. A., Runge, M. C. & Sherman, P. W. Ecological and evolutionary traps. Trends Ecol. Evol. 17, 474–480 (2002). (PMID: 10.1016/S0169-5347(02)02580-6)
Robertson, B. A., Rehage, J. S. & Sih, A. Ecological novelty and the emergence of evolutionary traps. Trends Ecol. Evol. 28, 552–560 (2013). (PMID: 10.1016/j.tree.2013.04.00423756104)
Walther, V. et al. Can oncology recapitulate paleontology? Lessons from species extinctions. Nat. Rev. Clin. Oncol. 12, 273–285 (2015). (PMID: 10.1038/nrclinonc.2015.12256879084569005)
Van Allen, E. M. et al. The genetic landscape of clinical resistance to RAF inhibition in metastatic melanoma. Cancer Discov. 4, 94–109 (2014). (PMID: 10.1158/2159-8290.CD-13-061724265153)
Singleton, K. R. et al. Melanoma therapeutic strategies that select against resistance by exploiting MYC-driven evolutionary convergence. Cell Rep. 21, 2796–2812 (2017). (PMID: 10.1016/j.celrep.2017.11.022292120275728698)
Holohan, C. et al. Cancer drug resistance: an evolving paradigm. Nat. Rev. Cancer 13, 714–726 (2013). (PMID: 10.1038/nrc359924060863)
Gatenby, R. & Brown, J. The evolution and ecology of resistance in cancer therapy. Cold Spring Harb. Perspect. Med. 8, 3 (2018). (PMID: 10.1101/cshperspect.a033415)
Konieczkowski, D. J., Johannessen, C. M. & Garraway, L. A. A convergence-based framework for cancer drug resistance. Cancer Cell 33, 801–815 (2018). (PMID: 10.1016/j.ccell.2018.03.025297636225957297)
Gundem, G. et al. The evolutionary history of lethal metastatic prostate cancer. Nature 520, 353–357 (2015). (PMID: 10.1038/nature14347258308804413032)
Juric, D. et al. Convergent loss of PTEN leads to clinical resistance to a PI(3)Kα inhibitor. Nature 518, 240–244 (2015). (PMID: 10.1038/nature1394825409150)
Wang, L. et al. An acquired vulnerability of drug-resistant melanoma with therapeutic potential. Cell 173, 1413–1425.e14 (2018). (PMID: 10.1016/j.cell.2018.04.01229754815)
Chen, G. et al. Targeting the adaptability of heterogeneous aneuploids. Cell 160, 771–784 (2015). (PMID: 10.1016/j.cell.2015.01.026256797664328141)
Imamovic, L. et al. Drug-driven phenotypic convergence supports rational treatment strategies of chronic infections. Cell 172, 121–134.e14 (2018). (PMID: 10.1016/j.cell.2017.12.012293074905766827)
Amirouchene-Angelozzi, N., Swanton, C. & Bardelli, A. Tumor evolution as a therapeutic target. Cancer Discov. 7, 805–817 (2017). (PMID: 10.1158/2159-8290.CD-17-0343)
Zhao, B. et al. Exploiting temporal collateral sensitivity in tumor clonal evolution. Cell 165, 234–246 (2016). (PMID: 10.1016/j.cell.2016.01.045269245785152932)
Savolainen, O., Lascoux, M. & Merila, J. Ecological genomics of local adaptation. Nat. Rev. Genet. 14, 807–820 (2013). (PMID: 10.1038/nrg352224136507)
Tiffin, P. & Ross-Ibarra, J. Advances and limits of using population genetics to understand local adaptation. Trends Ecol. Evol. 29, 673–680 (2014). (PMID: 10.1016/j.tree.2014.10.00425454508)
Hart, T. et al. Measuring error rates in genomic perturbation screens: gold standards for human functional genomics. Mol. Syst. Biol. 10, 733 (2014). (PMID: 10.15252/msb.20145216249871134299491)
Shalem, O. et al. Genome-scale CRISPR–Cas9 knockout screening in human cells. Science 343, 84–87 (2014). (PMID: 10.1126/science.124700524336571)
Lin, K. H. et al. Systematic Dissection of the Metabolic-Apoptotic Interface in AML Reveals Heme Biosynthesis to Be a Regulator of Drug Sensitivity. Cell Metab. 29, 1217–1231.e7 (2019). (PMID: 10.1016/j.cmet.2019.01.011307734636506362)
Fiskus, W. et al. Highly effective combination of LSD1 (KDM1A) antagonist and pan-histone deacetylase inhibitor against human AML cells. Leukemia 28, 2155–2164 (2014). (PMID: 10.1038/leu.2014.119246993044739780)
Fiskus, W. et al. Combined epigenetic therapy with the histone methyltransferase EZH2 inhibitor 3-deazaneplanocin A and the histone deacetylase inhibitor panobinostat against human AML cells. Blood 114, 2733–2743 (2009). (PMID: 10.1182/blood-2009-03-213496196386192756128)
Beaumont, K. A. et al. Cell cycle phase-specific drug resistance as an escape mechanism of melanoma cells. J. Invest. Dermatol. 136, 1479–1489 (2016). (PMID: 10.1016/j.jid.2016.02.80526970356)
Knutson, S. K. et al. Synergistic anti-tumor activity of EZH2 inhibitors and glucocorticoid receptor agonists in models of germinal center non-Hodgkin lymphomas. PLoS ONE 9, e111840 (2014). (PMID: 10.1371/journal.pone.0111840254936304262195)
Lee, T., Karon, M. & Momparler, R. L. Kinetic studies on phosphorylation of 5-azacytidine with the purified uridine-cytidine kinase from calf thymus. Cancer Res. 34, 2482–2488 (1974). (PMID: 4137739)
Liliemark, J. O., Plunkett, W. & Dixon, D. O. Relationship of 1-β-D-arabinofuranosylcytosine in plasma to 1-β-D-arabinofuranosylcytosine 5′-triphosphate levels in leukemic cells during treatment with high-dose 1-β-D-arabinofuranosylcytosine. Cancer Res. 45, 5952–5957 (1985). (PMID: 4053067)
Cai, J. et al. Two distinct molecular mechanisms underlying cytarabine resistance in human leukemic cells. Cancer Res. 68, 2349–2357 (2008). (PMID: 10.1158/0008-5472.CAN-07-552818381442)
Margueron, R. & Reinberg, D. The Polycomb complex PRC2 and its mark in life. Nature 469, 343–349 (2011). (PMID: 10.1038/nature09784212488413760771)
Holoch, D. & Margueron, R. Mechanisms regulating PRC2 recruitment and enzymatic activity. Trends Biochem. Sci. 42, 531–542 (2017). (PMID: 10.1016/j.tibs.2017.04.00328483375)
Schmitges, F. W. et al. Histone methylation by PRC2 is inhibited by active chromatin marks. Mol Cell 42, 330–341 (2011). (PMID: 10.1016/j.molcel.2011.03.02521549310)
Zheng, Y. et al. Total kinetic analysis reveals how combinatorial methylation patterns are established on lysines 27 and 36 of histone H3. Proc. Natl Acad. Sci. USA 109, 13549–13554 (2012). (PMID: 10.1073/pnas.1205707109228697453427122)
Bennett, R. L. et al. The role of nuclear receptor-binding SET domain family histone lysine methyltransferases in cancer. Cold Spring Harb. Perspect. Med. 7, a026708 (2017). (PMID: 10.1101/cshperspect.a026708281937675453381)
Kaur, M. & Cole, M. D. MYC acts via the PTEN tumor suppressor to elicit autoregulation and genome-wide gene repression by activation of the Ezh2 methyltransferase. Cancer Res. 73, 695–705 (2013). (PMID: 10.1158/0008-5472.CAN-12-252223135913)
Lin, K. H. et al. Targeting MCL-1/BCL-XL forestalls the acquisition of resistance to ABT-199 in acute myeloid leukemia. Sci. Rep. 6, 27696 (2016). (PMID: 10.1038/srep27696272831584901329)
Ramsey, H. E. et al. A novel MCL1 inhibitor combined with venetoclax rescues venetoclax-resistant acute myelogenous leukemia. Cancer Discov. 8, 1566–1581 (2018). (PMID: 10.1158/2159-8290.CD-18-0140301856276279595)
Gollner, S. et al. Loss of the histone methyltransferase EZH2 induces resistance to multiple drugs in acute myeloid leukemia. Nat. Med. 23, 69–78 (2017). (PMID: 10.1038/nm.424727941792)
Farrell, A. S. & Sears, R. C. MYC degradation. Cold Spring Harb. Perspect. Med. 4, a014365 (2014). (PMID: 10.1101/cshperspect.a014365245915363935390)
Bradley, W. D. et al. EZH2 inhibitor efficacy in non-Hodgkin’s lymphoma does not require suppression of H3K27 monomethylation. Chem. Biol. 21, 1463–1475 (2014). (PMID: 10.1016/j.chembiol.2014.09.01725457180)
Ryan, J. & Letai, A. BH3 profiling in whole cells by fluorimeter or FACS. Methods 61, 156–164 (2013). (PMID: 10.1016/j.ymeth.2013.04.006236079903686919)
Campone, M. et al. c-Myc dependent expression of pro-apoptotic Bim renders HER2-overexpressing breast cancer cells dependent on anti-apoptotic Mcl-1. Mol. Cancer 10, 110 (2011). (PMID: 10.1186/1476-4598-10-110218997283175201)
Lee, Y. Y. et al. CREB-binding protein (CBP) regulates β-adrenoceptor (β-AR)-mediated apoptosis. Cell Death Differ. 20, 941–952 (2013). (PMID: 10.1038/cdd.2013.29235792423679460)
Muthalagu, N. et al. BIM is the primary mediator of MYC-induced apoptosis in multiple solid tissues. Cell Rep. 8, 1347–1353 (2014). (PMID: 10.1016/j.celrep.2014.07.057251766524231288)
Villunger, A. et al. p53- and drug-induced apoptotic responses mediated by BH3-only proteins puma and noxa. Science 302, 1036–1038 (2003). (PMID: 10.1126/science.109007214500851)
Nakano, K. & Vousden, K. H. PUMA, a novel proapoptotic gene, is induced by p53. Mol. Cell 7, 683–694 (2001). (PMID: 10.1016/S1097-2765(01)00214-311463392)
Ni Chonghaile, T. et al. Pretreatment mitochondrial priming correlates with clinical response to cytotoxic chemotherapy. Science 334, 1129–1133 (2011). (PMID: 10.1126/science.120672722033517)
Dauch, D. et al. A MYC-aurora kinase A protein complex represents an actionable drug target in p53-altered liver cancer. Nat. Med. 22, 744–753 (2016). (PMID: 10.1038/nm.410727213815)
Stine, Z. E. et al. MYC, metabolism, and cancer. Cancer Discov. 5, 1024–1039 (2015). (PMID: 10.1158/2159-8290.CD-15-0507263821454592441)
den Hollander, J. et al. Aurora kinases A and B are up-regulated by Myc and are essential for maintenance of the malignant state. Blood 116, 1498–1505 (2010). (PMID: 10.1182/blood-2009-11-251074)
Fong, C. Y. et al. BET inhibitor resistance emerges from leukaemia stem cells. Nature 525, 538–542 (2015). (PMID: 10.1038/nature14888263677966069604)
Rathert, P. et al. Transcriptional plasticity promotes primary and acquired resistance to BET inhibition. Nature 525, 543–547 (2015). (PMID: 10.1038/nature14898263677984921058)
Shu, S. et al. Response and resistance to BET bromodomain inhibitors in triple-negative breast cancer. Nature 529, 413–417 (2016). (PMID: 10.1038/nature16508267350144854653)
Xia, B. et al. c-Myc plays part in drug resistance mediated by bone marrow stromal cells in acute myeloid leukemia. Leuk. Res. 39, 92–99 (2015). (PMID: 10.1016/j.leukres.2014.11.00425443862)
Zhang, Y. et al. Sp1 and c-Myc modulate drug resistance of leukemia stem cells by regulating survivin expression through the ERK-MSK MAPK signaling pathway. Mol. Cancer 14, 56 (2015). (PMID: 10.1186/s12943-015-0326-0258901964357193)
Pan, X. N. et al. Inhibition of c-Myc overcomes cytotoxic drug resistance in acute myeloid leukemia cells by promoting differentiation. PLoS ONE 9, e105381 (2014). (PMID: 10.1371/journal.pone.0105381251271214134294)
Cortes, J. E. et al. Glasdegib plus intensive/nonintensive chemotherapy in untreated acute myeloid leukemia: BRIGHT AML 1019 Phase III trials. Future Oncol. 15, 3531–3545 (2019). (PMID: 10.2217/fon-2019-037331516032)
Cortes, J. E. et al. Randomized comparison of low dose cytarabine with or without glasdegib in patients with newly diagnosed acute myeloid leukemia or high-risk myelodysplastic syndrome. Leukemia 33, 379–389 (2019). (PMID: 10.1038/s41375-018-0312-930555165)
DiNardo, C. D. et al. Venetoclax combined with decitabine or azacitidine in treatment-naive, elderly patients with acute myeloid leukemia. Blood 133, 7–17 (2019). (PMID: 10.1182/blood-2018-08-868752303612626318429)
Kotschy, A. et al. The MCL1 inhibitor S63845 is tolerable and effective in diverse cancer models. Nature 538, 477–482 (2016). (PMID: 10.1038/nature1983027760111)
Leverson, J. D. et al. Exploiting selective BCL-2 family inhibitors to dissect cell survival dependencies and define improved strategies for cancer therapy. Sci. Transl. Med. 7, 279ra40 (2015). (PMID: 10.1126/scitranslmed.aaa464225787766)
Soderquist, R. S. et al. Systematic mapping of BCL-2 gene dependencies in cancer reveals molecular determinants of BH3 mimetic sensitivity. Nat. Commun. 9, 3513 (2018). (PMID: 10.1038/s41467-018-05815-z301585276115427)
Xu, Y. & Vakoc, C. R. Targeting cancer cells with BET bromodomain inhibitors. Cold Spring Harb. Perspect. Med. 7, a026674 (2017). (PMID: 10.1101/cshperspect.a026674282134325495050)
Stathis, A. & Bertoni, F. BET proteins as targets for anticancer treatment. Cancer Discov. 8, 24–36 (2018). (PMID: 10.1158/2159-8290.CD-17-060529263030)
Berthon, C. et al. Bromodomain inhibitor OTX015 in patients with acute leukaemia: a dose-escalation, phase 1 study. Lancet Haematol. 3, e186–e195 (2016). (PMID: 10.1016/S2352-3026(15)00247-127063977)
Fiskus, W. et al. Superior efficacy of cotreatment with BET protein inhibitor and BCL2 or MCL1 inhibitor against AML blast progenitor cells. Blood Cancer J. 9, 4 (2019). (PMID: 10.1038/s41408-018-0165-5306474046333829)
Esteve-Arenys, A. et al. The BET bromodomain inhibitor CPI203 overcomes resistance to ABT-199 (venetoclax) by downregulation of BFL-1/A1 in in vitro and in vivo models of MYC+/BCL2+ double hit lymphoma. Oncogene 37, 1830–1844 (2018). (PMID: 10.1038/s41388-017-0111-129353886)
Wang, T. et al. Genetic screens in human cells using the CRISPR–Cas9 system. Science 343, 80–84 (2014). (PMID: 10.1126/science.124698124336569)
Sarosiek, K. A. et al. BID preferentially activates BAK while BIM preferentially activates BAX, affecting chemotherapy response. Mol. Cell 51, 751–765 (2013). (PMID: 10.1016/j.molcel.2013.08.048240749544164233)
Vo, T. T. et al. Relative mitochondrial priming of myeloblasts and normal HSCs determines chemotherapeutic success in AML. Cell 151, 344–355 (2012). (PMID: 10.1016/j.cell.2012.08.038230631243534747)
معلومات مُعتمدة: F30 CA206348 United States CA NCI NIH HHS; F31 CA195967 United States CA NCI NIH HHS; R01 CA207083 United States CA NCI NIH HHS; P30 CA014236 United States CA NCI NIH HHS; T32 GM007171 United States GM NIGMS NIH HHS
المشرفين على المادة: 0 (Nuclear Proteins)
0 (Transcription Factors)
تواريخ الأحداث: Date Created: 20200324 Date Completed: 20200626 Latest Revision: 20240922
رمز التحديث: 20240922
مُعرف محوري في PubMed: PMC7398704
DOI: 10.1038/s41588-020-0590-9
PMID: 32203462
قاعدة البيانات: MEDLINE
الوصف
تدمد:1546-1718
DOI:10.1038/s41588-020-0590-9