دورية أكاديمية

Ultra-small carbon fiber electrode recording site optimization and improved in vivo chronic recording yield.

التفاصيل البيبلوغرافية
العنوان: Ultra-small carbon fiber electrode recording site optimization and improved in vivo chronic recording yield.
المؤلفون: Welle EJ; Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States of America., Patel PR, Woods JE, Petrossians A, Della Valle E, Vega-Medina A, Richie JM, Cai D, Weiland JD, Chestek CA
المصدر: Journal of neural engineering [J Neural Eng] 2020 Apr 29; Vol. 17 (2), pp. 026037. Date of Electronic Publication: 2020 Apr 29.
نوع المنشور: Journal Article; Research Support, N.I.H., Extramural; Research Support, Non-U.S. Gov't; Research Support, U.S. Gov't, Non-P.H.S.
اللغة: English
بيانات الدورية: Publisher: Institute of Physics Pub Country of Publication: England NLM ID: 101217933 Publication Model: Electronic Cited Medium: Internet ISSN: 1741-2552 (Electronic) Linking ISSN: 17412552 NLM ISO Abbreviation: J Neural Eng Subsets: MEDLINE
أسماء مطبوعة: Original Publication: Bristol, U.K. : Institute of Physics Pub., 2004-
مواضيع طبية MeSH: Neurons* , Silicon*, Carbon Fiber ; Electrodes, Implanted ; Microelectrodes
مستخلص: Objective: Carbon fiber electrodes may enable better long-term brain implants, minimizing the tissue response commonly seen with silicon-based electrodes. The small diameter fiber may enable high-channel count brain-machine interfaces capable of reproducing dexterous movements. Past carbon fiber electrodes exhibited both high fidelity single unit recordings and a healthy neuronal population immediately adjacent to the recording site. However, the recording yield of our carbon fiber arrays chronically implanted in the brain typically hovered around 30%, for previously unknown reasons. In this paper we investigated fabrication process modifications aimed at increasing recording yield and longevity.
Approach: We tested a new cutting method using a 532nm laser against traditional scissor methods for the creation of the electrode recording site. We verified the efficacy of improved recording sites with impedance measurements and in vivo array recording yield. Additionally, we tested potentially longer-lasting coating alternatives to PEDOT:pTS, including PtIr and oxygen plasma etching. New coatings were evaluated with accelerated soak testing and acute recording.
Main Results: We found that the laser created a consistent, sustainable 257 ± 13.8 µm 2 electrode with low 1 kHz impedance (19 ± 4 kΩ with PEDOT:pTS) and low fiber-to-fiber variability. The PEDOT:pTS coated laser cut fibers were found to have high recording yield in acute (97% > 100 µV pp , N = 34 fibers) and chronic (84% > 100 µV pp , day 7; 71% > 100 µV pp , day 63, N = 45 fibers) settings. The laser cut recording sites were good platforms for the PtIr coating and oxygen plasma etching, slowing the increase in 1 kHz impedance compared to PEDOT:pTS in an accelerated soak test.
Significance: We have found that laser cut carbon fibers have a high recording yield that can be maintained for over two months in vivo and that alternative coatings perform better than PEDOT:pTS in accelerated aging tests. This work provides evidence to support carbon fiber arrays as a viable approach to high-density, clinically-feasible brain-machine interfaces.
References: J Neural Eng. 2013 Aug;10(4):046016. (PMID: 23860226)
J Neurophysiol. 2009 Mar;101(3):1679-89. (PMID: 19109453)
Front Neurosci. 2018 Nov 05;12:751. (PMID: 30455621)
J Neurosci. 2007 Aug 1;27(31):8387-94. (PMID: 17670985)
ACS Nano. 2018 Oct 23;12(10):10419-10429. (PMID: 30207690)
J Med Internet Res. 2019 Oct 31;21(10):e16194. (PMID: 31642810)
J Neural Eng. 2010 Aug;7(4):046011. (PMID: 20644246)
J Neural Eng. 2016 Dec;13(6):066002. (PMID: 27705958)
Cereb Cortex. 1997 Mar;7(2):178-80. (PMID: 9087825)
IEEE Trans Neural Syst Rehabil Eng. 2001 Mar;9(1):2-11. (PMID: 11482359)
Physiol Rev. 2017 Apr;97(2):767-837. (PMID: 28275048)
J Neurosci. 2016 Oct 12;36(41):10640-10653. (PMID: 27733614)
J Neural Eng. 2011 Aug;8(4):045005. (PMID: 21775782)
J Neural Eng. 2012 Dec;9(6):066001. (PMID: 23075490)
Annu Rev Biomed Eng. 2008;10:275-309. (PMID: 18429704)
Biomaterials. 2019 Jun;205:120-132. (PMID: 30925400)
Lancet. 2017 May 6;389(10081):1821-1830. (PMID: 28363483)
J Neural Eng. 2018 Feb;15(1):016007. (PMID: 28952963)
Nano Lett. 2015 Oct 14;15(10):6979-84. (PMID: 26317328)
Exp Neurol. 2005 Sep;195(1):115-26. (PMID: 16045910)
Nat Biomed Eng. 2020 Oct;4(10):973-983. (PMID: 32719512)
Sci Adv. 2020 Mar 20;6(12):eaay2789. (PMID: 32219158)
Nature. 2006 Jul 13;442(7099):164-71. (PMID: 16838014)
Prosthet Orthot Int. 2017 Feb;41(1):33-40. (PMID: 26932980)
Lancet. 2013 Feb 16;381(9866):557-64. (PMID: 23253623)
Brain Res. 1994 Feb 21;637(1-2):27-36. (PMID: 8180807)
Science. 2008 Mar 7;319(5868):1370-4. (PMID: 18323449)
Proc Natl Acad Sci U S A. 2017 Dec 12;114(50):13260-13265. (PMID: 29158415)
J Neural Eng. 2016 Apr;13(2):026017-26017. (PMID: 26863276)
Semin Immunol. 2008 Apr;20(2):86-100. (PMID: 18162407)
J Neurophysiol. 2018 Nov 1;120(5):2232-2245. (PMID: 30067128)
Biomaterials. 2012 Sep;33(25):5875-86. (PMID: 22656446)
Nat Commun. 2020 Aug 21;11(1):4191. (PMID: 32826892)
J Neurosci Methods. 1980 Dec;3(2):129-49. (PMID: 6110810)
Nat Neurosci. 2012 Dec;15(12):1752-7. (PMID: 23160043)
J Neural Eng. 2018 Feb;15(1):016010. (PMID: 28905812)
Nature. 2016 Apr 13;533(7602):247-50. (PMID: 27074513)
J Neural Eng. 2019 Jun;16(3):035001. (PMID: 30736013)
Nat Mater. 2015 Dec;14(12):1286-92. (PMID: 26436341)
J Neural Eng. 2011 Oct;8(5):056010. (PMID: 21878706)
Brain. 1996 Apr;119 ( Pt 2):507-22. (PMID: 8800945)
J Neural Eng. 2016 Apr;13(2):025003. (PMID: 26905379)
Chem Soc Rev. 2011 Jul;40(7):3824-34. (PMID: 21487627)
J Neural Eng. 2019 Feb;16(1):016024. (PMID: 30524060)
J Neural Eng. 2013 Aug;10(4):045002. (PMID: 23723130)
J Comput Neurosci. 1999 Mar-Apr;6(2):169-84. (PMID: 10333161)
Lab Chip. 2015 Nov 21;15(22):4256-72. (PMID: 26400550)
J Neural Eng. 2018 Jun;15(3):036014. (PMID: 29589592)
Sci Rep. 2020 Mar 2;10(1):3830. (PMID: 32123283)
Front Neurosci. 2018 Oct 08;12:715. (PMID: 30349453)
J Neurosci Methods. 2005 Oct 15;148(1):1-18. (PMID: 16198003)
J Neurophysiol. 2007 Jul;98(1):327-33. (PMID: 17428905)
Elife. 2017 Feb 21;6:. (PMID: 28220753)
J Neural Eng. 2015 Aug;12(4):046009. (PMID: 26035638)
Nat Nanotechnol. 2008 Jul;3(7):434-9. (PMID: 18654569)
Nature. 2002 Mar 14;416(6877):141-2. (PMID: 11894084)
J Neural Eng. 2017 Jun;14(3):036010. (PMID: 28102825)
Bioelectron Med. 2019 Feb 15;5:3. (PMID: 32232094)
J Neural Eng. 2016 Feb;13(1):016010. (PMID: 26655972)
Clin Neurophysiol. 2005 Sep;116(9):2240-50. (PMID: 16055377)
Biomaterials. 2011 Aug;32(24):5551-7. (PMID: 21601278)
Ophthalmology. 2011 Nov;118(11):2227-37. (PMID: 22047893)
Med Eng Phys. 2008 Dec;30(10):1270-4. (PMID: 18692425)
J Neural Eng. 2013 Apr;10(2):026010. (PMID: 23428937)
J Neural Eng. 2013 Dec;10(6):066014. (PMID: 24216311)
Nat Methods. 2016 Oct;13(10):875-82. (PMID: 27571550)
Lab Chip. 2017 Mar 14;17(6):1104-1115. (PMID: 28233001)
معلومات مُعتمدة: OT2 OD024907 United States OD NIH HHS; U01 NS094375 United States NS NINDS NIH HHS; UF1 NS107659 United States NS NINDS NIH HHS
المشرفين على المادة: 0 (Carbon Fiber)
Z4152N8IUI (Silicon)
تواريخ الأحداث: Date Created: 20200327 Date Completed: 20210625 Latest Revision: 20240108
رمز التحديث: 20240108
مُعرف محوري في PubMed: PMC10771280
DOI: 10.1088/1741-2552/ab8343
PMID: 32209743
قاعدة البيانات: MEDLINE
الوصف
تدمد:1741-2552
DOI:10.1088/1741-2552/ab8343