دورية أكاديمية

Colorectal cancer-associated anaerobic bacteria proliferate in tumor spheroids and alter the microenvironment.

التفاصيل البيبلوغرافية
العنوان: Colorectal cancer-associated anaerobic bacteria proliferate in tumor spheroids and alter the microenvironment.
المؤلفون: Kasper SH; Exploratory Science Center, Merck & Co., Inc., Cambridge, Massachusetts, USA. stephen.kasper@merck.com., Morell-Perez C; Exploratory Science Center, Merck & Co., Inc., Cambridge, Massachusetts, USA., Wyche TP; Exploratory Science Center, Merck & Co., Inc., Cambridge, Massachusetts, USA., Sana TR; Exploratory Science Center, Merck & Co., Inc., Cambridge, Massachusetts, USA., Lieberman LA; Exploratory Science Center, Merck & Co., Inc., Cambridge, Massachusetts, USA., Hett EC; Exploratory Science Center, Merck & Co., Inc., Cambridge, Massachusetts, USA. erik.hett@merck.com.
المصدر: Scientific reports [Sci Rep] 2020 Mar 24; Vol. 10 (1), pp. 5321. Date of Electronic Publication: 2020 Mar 24.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Nature Publishing Group Country of Publication: England NLM ID: 101563288 Publication Model: Electronic Cited Medium: Internet ISSN: 2045-2322 (Electronic) Linking ISSN: 20452322 NLM ISO Abbreviation: Sci Rep Subsets: MEDLINE
أسماء مطبوعة: Original Publication: London : Nature Publishing Group, copyright 2011-
مواضيع طبية MeSH: Cell Culture Techniques/*methods , Colorectal Neoplasms/*microbiology , Spheroids, Cellular/*metabolism, Bacteria, Anaerobic ; Cell Line, Tumor ; Coculture Techniques/methods ; Colorectal Neoplasms/pathology ; Disease Progression ; Fusobacterium Infections/microbiology ; Fusobacterium nucleatum/genetics ; Fusobacterium nucleatum/metabolism ; Fusobacterium nucleatum/pathogenicity ; Humans ; Models, Biological ; Tumor Microenvironment/physiology
مستخلص: Recent reports show that colorectal tumors contain microbiota that are distinct from those that reside in a 'normal' colon environment, and that these microbiota can contribute to cancer progression. Fusobacterium nucleatum is the most commonly observed species in the colorectal tumor microenvironment and reportedly influences disease progression through numerous mechanisms. However, a detailed understanding of the role of this organism in cancer progression is limited, in part due to challenges in maintaining F. nucleatum viability under standard aerobic cell culture conditions. Herein we describe the development of a 3-dimensional (3D) tumor spheroid model that can harbor and promote the growth of anaerobic bacteria. Bacteria-tumor cell interactions and metabolic crosstalk were extensively studied by measuring the kinetics of bacterial growth, cell morphology and lysis, cancer-related gene expression, and metabolomics. We observed that viable F. nucleatum assembles biofilm-like structures in the tumor spheroid microenvironment, whereas heat-killed F. nucleatum is internalized and sequestered in the cancer cells. Lastly, we use the model to co-culture 28 Fusobacterium clinical isolates and demonstrate that the model successfully supports co-culture with diverse fusobacterial species. This bacteria-spheroid co-culture model enables mechanistic investigation of the role of anaerobic bacteria in the tumor microenvironment.
References: Siegel, R. L., Miller, K. D. & Jemal, A. Cancer statistics, 2017. CA. Cancer J. Clin. 67, 7–30 (2017). (PMID: 10.3322/caac.2138728055103)
Aran, V., Victorino, A. P., Thuler, L. C. & Ferreira, C. G. Colorectal Cancer: Epidemiology, Disease Mechanisms and Interventions to Reduce Onset and Mortality. Clin. Colorectal Cancer 15, 195–203 (2016). (PMID: 10.1016/j.clcc.2016.02.00826964802)
Sears, C. L. & Garrett, W. S. Microbes, microbiota, and colon cancer. Cell Host Microbe 15, 317–328 (2014). (PMID: 10.1016/j.chom.2014.02.007246293384003880)
Louis, P., Hold, G. L. & Flint, H. J. The gut microbiota, bacterial metabolites and colorectal cancer. Nat. Rev. Microbiol. 12, 661–672 (2014). (PMID: 10.1038/nrmicro334425198138)
Zackular, J. P., Baxter, N. T., Chen, G. Y. & Schloss, P. D. Manipulation of the Gut Microbiota Reveals Role in Colon Tumorigenesis. mSphere 1, 1–12 (2015).
Castellarin, M. et al. Fusobacterium nucleatum infection is prevalent in human colorectal carcinoma. Genome Res. 22, 299–306 (2012). (PMID: 10.1101/gr.126516.111220099893266037)
Kostic, A. D. et al. Genomic analysis identifies association of Fusobacterium with colorectal carcinoma. Genome Res. 22, 292–298 (2012). (PMID: 10.1101/gr.126573.111220099903266036)
Flanagan, L. et al. Fusobacterium nucleatum associates with stages of colorectal neoplasia development, colorectal cancer and disease outcome. Eur. J. Clin. Microbiol. Infect. Dis. 33, 1381–1390 (2014). (PMID: 10.1007/s10096-014-2081-324599709)
Ito, M. et al. Association of Fusobacterium nucleatum with clinical and molecular features in colorectal serrated pathway. Int. J. Cancer 137, 1258–1268 (2015). (PMID: 10.1002/ijc.2948825703934)
Bullman, S. et al. Analysis of Fusobacterium persistence and antibiotic response in colorectal cancer. Science 358, 1443–1448 (2017). (PMID: 10.1126/science.aal5240291702805823247)
Brennan, C. A. & Garrett, W. S. Fusobacterium nucleatum — symbiont, opportunist and oncobacterium. Nat. Rev. Microbiol. 17, 156–166 (2019). (PMID: 10.1038/s41579-018-0129-6305461136589823)
Flynn, K. J., Baxter, N. T. & Schloss, P. D. Metabolic and Community Synergy of Oral Bacteria in Colorectal Cancer. mSphere 1, 1–6 (2016). (PMID: 10.1128/mSphere.00102-16)
Rubinstein, M. R. et al. Fusobacterium nucleatum Promotes Colorectal Carcinogenesis by Modulating E-Cadherin/β-Catenin Signaling via its FadA Adhesin. Cell Host Microbe 14, 195–206 (2013). (PMID: 10.1016/j.chom.2013.07.012239541583770529)
Yang, Y. et al. Fusobacterium nucleatum Increases Proliferation of Colorectal Cancer Cells and Tumor Development in Mice by Activating Toll-Like Receptor 4 Signaling to Nuclear Factor−κB, and Up-regulating Expression of MicroRNA-21. Gastroenterology 152, 851–866.e24 (2017). (PMID: 10.1053/j.gastro.2016.11.01827876571)
Gur, C. et al. Binding of the Fap2 protein of Fusobacterium nucleatum to human inhibitory receptor TIGIT protects tumors from immune cell attack. Immunity 42, 344–355 (2015). (PMID: 10.1016/j.immuni.2015.01.01043617324361732)
Kostic, A. D. et al. Fusobacterium nucleatum Potentiates Intestinal Tumorigenesis and Modulates the Tumor-Immune Microenvironment. Cell Host Microbe 14, 207–215 (2013). (PMID: 10.1016/j.chom.2013.07.007239541593772512)
Yu, T. C. et al. Fusobacterium nucleatum Promotes Chemoresistance to Colorectal Cancer by Modulating Autophagy. Cell 170, 548–563.e16 (2017). (PMID: 10.1016/j.cell.2017.07.008287534295767127)
Yan, X., Liu, L., Li, H., Qin, H. & Sun, Z. Clinical significance of Fusobacterium nucleatum, epithelial–mesenchymal transition, and cancer stem cell markers in stage III/IV colorectal cancer patients. Onco. Targets. Ther. 10, 5031–5046 (2017). (PMID: 10.2147/OTT.S145949290816655652912)
Li, Y. Y. et al. Association of Fusobacterium nucleatum infection with colorectal cancer in Chinese patients. World J. Gastroenterol. 22, 3227–3233 (2016). (PMID: 10.3748/wjg.v22.i11.3227270040004789998)
Fritz, J. V., Desai, M. S., Shah, P., Schneider, J. G. & Wilmes, P. From meta-omics to causality: Experimental models for human microbiome research. Microbiome 1, 1–15 (2013). (PMID: 10.1186/2049-2618-1-14)
von Martels, J. Z. H. et al. The role of gut microbiota in health and disease: In vitro modeling of host-microbe interactions at the aerobe-anaerobe interphase of the human gut. Anaerobe 44, 3–12 (2017). (PMID: 10.1016/j.anaerobe.2017.01.001)
Sadabad, M. S. et al. A simple coculture system shows mutualism between anaerobic faecalibacteria and epithelial Caco-2 cells. Sci. Rep. 5, 1–9 (2015).
Shah, P. et al. A microfluidics-based in vitro model of the gastrointestinal human-microbe interface. Nat. Commun. 7 (2016).
Eain, M. M. G. et al. Engineering Solutions for Representative Models of the Gastrointestinal Human-Microbe. Interface. Engineering 3, 60–65 (2017).
Ulluwishewa, D. et al. Live Faecalibacterium prausnitzii in an apical anaerobic model of the intestinal epithelial barrier. Cell. Microbiol. 17, 226–240 (2015). (PMID: 10.1111/cmi.1236025224879)
Jalili-Firoozinezhad, S. et al. A complex human gut microbiome cultured in an anaerobic intestine-on-a-chip. Nat. Biomed. Eng. 3, 520–531 (2019). (PMID: 10.1038/s41551-019-0397-0310863256658209)
Leslie, J. L. et al. Persistence and toxin production by Clostridium difficile within human intestinal organoids result in disruption of epithelial paracellular barrier function. Infect. Immun. 83, 138–145 (2015). (PMID: 10.1128/IAI.02561-1425312952)
Williamson, I. A. et al. A High-Throughput Organoid Microinjection Platform to Study Gastrointestinal Microbiota and Luminal Physiology. Cell. Mol. Gastroenterol. Hepatol. 6, 301–319 (2018). (PMID: 10.1016/j.jcmgh.2018.05.004301238206092482)
Costa, E. C. et al. 3D tumor spheroids: an overview on the tools and techniques used for their analysis. Biotechnol. Adv. 34, 1427–1441 (2016). (PMID: 10.1016/j.biotechadv.2016.11.00227845258)
Hirschhaeuser, F. et al. Multicellular tumor spheroids: an underestimated tool is catching up again. J. Biotechnol. 148, 3–15 (2010). (PMID: 10.1016/j.jbiotec.2010.01.01220097238)
Zanoni, M. et al. 3D tumor spheroid models for in vitro therapeutic screening: a systematic approach to enhance the biological relevance of data obtained. Sci. Rep. 6, 1–11 (2016). (PMID: 10.1038/srep19103)
Osswald, A. et al. Three-dimensional tumor spheroids for in vitro analysis of bacteria as gene delivery vectors in tumor therapy. Microb. Cell Fact. 14, 1–12 (2015). (PMID: 10.1186/s12934-015-0383-5)
Harimoto, T. et al. Rapid screening of engineered microbial therapies in a 3D multicellular model. Proc. Natl. Acad. Sci. 116 (2019).
Nakatsu, G. et al. Gut mucosal microbiome across stages of colorectal carcinogenesis. Nat. Commun. 6, 1–9 (2015). (PMID: 10.1038/ncomms9727)
Sutherland, R. M. et al. Oxygen and Differentiation in Multicellular Spheroids of Human Colon Carcinoma. Cancer Res. 46, 5320–5329 (1986). (PMID: 37568813756881)
McCoy, A. N. et al. Fusobacterium Is Associated with Colorectal Adenomas. PLoS One 8 (2013).
Wong, S. H. et al. Quantitation of faecal Fusobacterium improves faecal immunochemical test in detecting advanced colorectal neoplasia. Gut 1441–1448, https://doi.org/10.1136/gutjnl-2016-312766 (2017).
Mima, K. et al. Fusobacterium nucleatum and T cells in Colorectal Carcinoma. JAMA Oncol. 02215, 653–661 (2015). (PMID: 10.1001/jamaoncol.2015.1377)
Mima, K. et al. Fusobacterium nucleatum in colorectal carcinoma tissue and patient prognosis. Gut 1973–1980, https://doi.org/10.1136/gutjnl-2015-310101 (2016).
Kapatral, V. et al. Genome sequence and analysis of the oral bacterium Fusobacterium nucleatum Strain ATCC 25586. J. Bacteriol. 184, 2005–2018 (2005). (PMID: 10.1128/JB.184.7.2005-2018.2002)
Bolstad, A. I., Jensen, H. B. & Bakken, V. Taxonomy, Biology, and Periodontal Aspects of Fusobacterium nucleatum. Clin. Microbiol. Rev. 9, 55–71 (1996). (PMID: 10.1128/CMR.9.1.558665477172882)
Johnson, C. H. et al. Metabolism links bacterial biofilms and colon carcinogenesis. Cell Metab. 21, 891–897 (2015). (PMID: 10.1016/j.cmet.2015.04.011259596744456201)
Hold, G. L. Gastrointestinal Microbiota and Colon Cancer. Dig. Dis. 34, 244–250 (2016). (PMID: 10.1159/00044335827028619)
Abed, J. et al. Fap2 Mediates Fusobacterium nucleatum Colorectal Adenocarcinoma Enrichment by Binding to Tumor-Expressed Gal-GalNAc. Cell Host Microbe 20, 215–225 (2016). (PMID: 10.1016/j.chom.2016.07.006275129045465824)
McGuire, A. M. et al. Evolution of Invasion in a Diverse Set of Fusobacterium Species. MBio 5, 1–11 (2014). (PMID: 10.3391/mbi.2014.5.1.01)
Dejea, C. M. et al. Microbiota organization is a distinct feature of proximal colorectal cancers. Proc. Natl. Acad. Sci. 111, 18321–18326 (2014). (PMID: 10.1073/pnas.140619911125489084)
Dejea, C. M. et al. Patients with familial adenomatous polyposis harbor colonic biofilms containing tumorigenic bacteria. Science 359, 592–597 (2018). (PMID: 10.1126/science.aah3648294202935881113)
Chen, T. et al. Fusobacterium nucleatum promotes M2 polarization of macrophages in the microenvironment of colorectal tumours via a TLR4-dependent mechanism. Cancer Immunol. Immunother. 67, 1635–1646 (2018). (PMID: 10.1007/s00262-018-2233-x30121899)
Sasaki-Imamura, T., Yano, A. & Yoshida, Y. Production of indole from L-tryptophan and effects of these compounds on biofilm formation by fusobacterium nucleatum ATCC 25586. Appl. Environ. Microbiol. 76, 4260–4268 (2010). (PMID: 10.1128/AEM.00166-10204727412897440)
Gerner, E. W., Bruckheimer, E. & Cohen, A. Cancer pharmacoprevention: Targeting polyamine metabolism to manage risk factors for colon cancer. J. Biol. Chem. 293, 18770–18778 (2018). (PMID: 10.1074/jbc.TM118.003343303557376290143)
Gerner, E. W. & Meyskens Jr., F. L. Polyamines and cancer: old molecules, new understanding. Nat. Rev. Cancer 4 (2004).
Upreti, M. et al. Tumor-Endothelial Cell Spheroids: New Aspects to Enhance Radiation. Transl. Oncol. 4, 365–376 (2011). (PMID: 10.1593/tlo.11187221910013243660)
Cattin, S., Ramont, L. & Rüegg, C. Characterization and In Vivo Validation of a Three-Dimensional Multi-Cellular Culture Model to Study Heterotypic Interactions in Colorectal Cancer Cell Growth, Invasion and Metastasis. Front. Bioeng. Biotechnol. 6, 1–14 (2018). (PMID: 10.3389/fbioe.2018.00097)
Jeong, S., Lee, J., Shin, Y., Chung, S. & Kuh, H. Co-Culture of Tumor Spheroids and Fibroblasts in a Collagen Matrix-Incorporated Microfluidic Chip Mimics Reciprocal Activation in Solid Tumor Microenvironment. PLoS One 11, 1–17 (2016).
Chen, Y. et al. Microfluidic co-culture of liver tumor spheroids with stellate cells for the investigation of drug resistance and intercellular interactions. Analyst 144, 4233–4240 (2019). (PMID: 10.1039/C9AN00612E31210202)
Long, L., Yin, M. & Min, W. 3D Co-culture System of Tumor-associated Macrophages and Ovarian Cancer Cells. Bio-protocol 8 (2018).
Sherman, H., Gitschier, H. J. & Rossi, A. E. A Novel three-dimensional Immune oncology Model for high-throughput testing of tumoricidal Activity. Front. Immunol. 9, 1–6 (2018). (PMID: 10.3389/fimmu.2018.00857)
Courau, T. et al. Cocultures of human colorectal tumor spheroids with immune cells reveal the therapeutic potential of MICA/B and NKG2A targeting for cancer treatment. J. Immunother. Cancer 7, 1–14 (2019).
Trumpi, K. et al. Macrophages induce “budding” in aggressive human colon cancer subtypes by protease-mediated disruption of tight junctions. Oncotarget 9, 19490–19507 (2018). (PMID: 10.18632/oncotarget.24626297319615929404)
Varesano, S., Zocchi, M. R. & Poggi, A. Zoledronate Triggers Vδ2 T Cells to Destroy and Kill Spheroids of Colon Carcinoma: Quantitative Image Analysis of Three-Dimensional Cultures. Front. Immunol. 9 (2018).
Lazzari, G. et al. Multicellular spheroid based on a triple co-culture: A novel 3D model to mimic pancreatic tumor complexity. Acta Biomater. 78, 296–307 (2018). (PMID: 10.1016/j.actbio.2018.08.00830099198)
Susanti, S. et al. PO-304 Three-dimensional co-culture of colorectal cancer spheroid with cancer-associated fibroblast as a model to study immune cell modulation. ESMO Open 3, A347 LP–A347 (2018).
Geller, L. T. et al. Potential role of intratumor bacteria in mediating tumor resistance to the chemotherapeutic drug gemcitabine. Science 357, 1156–1160 (2017). (PMID: 10.1126/science.aah5043289122445727343)
Riquelme, E. et al. Tumor Microbiome Diversity and Composition Influence Pancreatic Cancer Outcomes. Cell 178, 795–806.e12 (2019). (PMID: 10.1016/j.cell.2019.07.008)
Liang, X., Bushman, F. D. & Fitzgerald, G. A. Rhythmicity of the intestinal microbiota is regulated by gender and the host circadian clock. Proc. Natl. Acad. Sci. 112, 10479–10484 (2015). (PMID: 10.1073/pnas.150130511226240359)
Babicki, S. et al. Heatmapper: web-enabled heat mapping for all. Nucleic Acids Res. 44, 147–153 (2016). (PMID: 10.1093/nar/gkw419)
Hulsen, T., de Vlieg, J. & Alkema, W. BioVenn – a web application for the comparison and visualization of biological lists using area-proportional Venn diagrams. BMC Genomics 6, 1–6 (2008).
تواريخ الأحداث: Date Created: 20200327 Date Completed: 20210104 Latest Revision: 20210324
رمز التحديث: 20231215
مُعرف محوري في PubMed: PMC7093526
DOI: 10.1038/s41598-020-62139-z
PMID: 32210258
قاعدة البيانات: MEDLINE
الوصف
تدمد:2045-2322
DOI:10.1038/s41598-020-62139-z