دورية أكاديمية

Bradykinin Receptors Play a Critical Role in the Chronic Post-ischaemia Pain Model.

التفاصيل البيبلوغرافية
العنوان: Bradykinin Receptors Play a Critical Role in the Chronic Post-ischaemia Pain Model.
المؤلفون: Gonçalves ECD; Laboratory of Autoimmunity and Immunopharmacology, Department of Health Sciences, Campus Araranguá, Federal University of Santa Catarina, Araranguá, SC, 88906-072, Brazil.; Post-Graduate Program of Neuroscience, Center of Biological Sciences, Federal University of Santa Catarina, Florianópolis, SC, 88040-900, Brazil., Vieira G; Laboratory of Autoimmunity and Immunopharmacology, Department of Health Sciences, Campus Araranguá, Federal University of Santa Catarina, Araranguá, SC, 88906-072, Brazil., Gonçalves TR; Laboratory of Autoimmunity and Immunopharmacology, Department of Health Sciences, Campus Araranguá, Federal University of Santa Catarina, Araranguá, SC, 88906-072, Brazil., Simões RR; Laboratory of Neurobiology of Pain and Inflammation, Department of Physiological Sciences, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, SC, 88040-900, Brazil., Brusco I; Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, Santa Maria, RS, 97105-900, Brazil., Oliveira SM; Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, Santa Maria, RS, 97105-900, Brazil., Calixto JB; Center of Innovation and Preclinical Research, Florianópolis, SC, 88056-000, Brazil., Cola M; Laboratory of Autoimmunity and Immunopharmacology, Department of Health Sciences, Campus Araranguá, Federal University of Santa Catarina, Araranguá, SC, 88906-072, Brazil., Santos ARS; Laboratory of Neurobiology of Pain and Inflammation, Department of Physiological Sciences, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, SC, 88040-900, Brazil., Dutra RC; Laboratory of Autoimmunity and Immunopharmacology, Department of Health Sciences, Campus Araranguá, Federal University of Santa Catarina, Araranguá, SC, 88906-072, Brazil. rafaelcdutra@gmail.com.; Post-Graduate Program of Neuroscience, Center of Biological Sciences, Federal University of Santa Catarina, Florianópolis, SC, 88040-900, Brazil. rafaelcdutra@gmail.com.; Laboratório de Autoimunidade e Imunofarmacologia (LAIF), Departamento de Ciências da Saúde, Universidade Federal de Santa Catarina, Campus Araranguá. Rodovia Jorge Lacerda, Km 35.4 - Jardim das Avenidas, Araranguá, SC, CEP 88906-072, Brazil. rafaelcdutra@gmail.com.
المصدر: Cellular and molecular neurobiology [Cell Mol Neurobiol] 2021 Jan; Vol. 41 (1), pp. 63-78. Date of Electronic Publication: 2020 Mar 28.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Kluwer Academic/Plenum Publishers Country of Publication: United States NLM ID: 8200709 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1573-6830 (Electronic) Linking ISSN: 02724340 NLM ISO Abbreviation: Cell Mol Neurobiol Subsets: MEDLINE
أسماء مطبوعة: Publication: 1999- : New York : Kluwer Academic/Plenum Publishers
Original Publication: New York : Plenum Press, c1981-
مواضيع طبية MeSH: Chronic Pain/*etiology , Chronic Pain/*metabolism , Ischemia/*complications , Receptors, Bradykinin/*metabolism, Animals ; Bradykinin Receptor Antagonists/pharmacology ; Cholinesterase Inhibitors/pharmacology ; Chronic Pain/genetics ; Disease Models, Animal ; Female ; Gene Expression Regulation/drug effects ; Gene Silencing/drug effects ; Hyperalgesia/complications ; Male ; Mice ; Nociception/drug effects ; Receptors, Bradykinin/genetics ; Spinal Cord/pathology
مستخلص: Complex regional pain syndrome type-I (CRPS-I) is a chronic painful condition resulting from trauma. Bradykinin (BK) is an important inflammatory mediator required in acute and chronic pain response. The objective of this study was to evaluate the association between BK receptors (B 1 and B 2 ) and chronic post-ischaemia pain (CPIP) development in mice, a widely accepted CRPS-I model. We assessed mechanical and cold allodynia, and paw oedema in male and female Swiss mice exposed to the CPIP model. Upon induction, the animals were treated with BKR antagonists (HOE-140 and DALBK); BKR agonists (Tyr-BK and DABK); antisense oligonucleotides targeting B 1 and B 2 and captopril by different routes in the model (7, 14 and 21 days post-induction). Here, we demonstrated that treatment with BKR antagonists, by intraperitoneal (i.p.), intraplantar (i.pl.), and intrathecal (i.t.) routes, mitigated CPIP-induced mechanical allodynia and oedematogenic response, but not cold allodynia. On the other hand, i.pl. administration of BKR agonists exacerbated pain response. Moreover, a single treatment with captopril significantly reversed the anti-allodynic effect of BKR antagonists. In turn, the inhibition of BKRs gene expression in the spinal cord inhibited the nociceptive behaviour in the 14th post-induction. The results of the present study suggest the participation of BKRs in the development and maintenance of chronic pain associated with the CPIP model, possibly linking them to CRPS-I pathogenesis.
References: Beerthuizen A, Stronks DL, Van A et al (2012) Demographic and medical parameters in the development of complex regional pain syndrome type 1 (CRPS1): prospective study on 596 patients with a fracture. Pain 153:1187–1192. (PMID: 22386473)
Beirith A, Santos ARS, Calixto JB (2003) The role of neuropeptides and capsaicin-sensitive fibres in glutamate-induced nociception and paw oedema in mice. Brain Res 969:110–116. (PMID: 12676371)
Belichard P, Landry M, Faye P, Bachvarov DR (2000) Inflammatory hyperalgesia induced by zymosan in the plantar tissue of the rat : effect of kinin receptor antagonists. Immunopharmacology 46:139–147. (PMID: 10647872)
Borsook D, Sava S (2009) Pain: do ACE inhibitors exacerbate complex regional pain syndrome? Nat Rev Neurol 5:306–308. (PMID: 19498433)
Bortalanza B, Ferreira J, Hess SC (2002) Anti-allodynic action of the tormentic acid, a triterpene isolated from plant, against neuropathic and inflammatory persistent pain in mice. Eur J Pharmacol 453(453):203–208. (PMID: 12398905)
Bradford M (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254.
Bruehl S (2015) Complex regional pain syndrome. Br Med J 29:1–13.
Bruehl S (2010) An update on the pathophysiology of complex regional pain syndrome. Anesthesiology 113:713–725. (PMID: 20693883)
Brusco I, Benatti A, Regina C et al (2019) Kinins and their B1 and B2 receptors are involved in fi bromyalgia-like pain symptoms in mice. Biochem Pharmacol 168:119–132. (PMID: 31254493)
Brusco I, Silva CR, Trevisan G et al (2017) Potentiation of paclitaxel-induced pain syndrome in mice by angiotensin I converting enzyme inhibition and involvement of kinins. Mol Neurobiol 54:7824–7837. (PMID: 27844290)
Cheng J-K, Ji R-R (2008) Intracellular signaling in primary sensory neurons and persistent pain. Neurochem Res 33:1970–1978. (PMID: 184279802570619)
Coderre TJ, Xanthos DN, Francis L, Bennett GJ (2004) Chronic post-ischemia pain (CPIP): a novel animal model of complex regional pain syndrome-type I (CRPS-I; reflex sympathetic dystrophy) produced by prolonged hindpaw ischemia and reperfusion in the rat. Pain 112:94–105. (PMID: 15494189)
Corrêa CR, Calixto JB (1993) Evidence for participation of B1 and B2 kinin receptors in formalin-induced nociceptive response in the mouse. Br J Pharmacol 110:193–198. (PMID: 8220879)
Costa R, Bicca MA, Manjavachi MN et al (2017) Kinin receptors sensitize TRPV4 channel and induce mechanical hyperalgesia: relevance to paclitaxel-induced peripheral neuropathy in mice. Mol Neurobiol 55:1–12.
Costa R, Motta EM, Dutra RC et al (2011) Anti-nociceptive effect of kinin B1 and B2 receptor antagonists on peripheral neuropathy induced by paclitaxel in mice. Br J Pharmacol 164:681–693. (PMID: 214702063188922)
Couture R, Harrisson M, Vianna RM, Cloutier F (2001) Kinin receptors in pain and inflammation. Eur J Pharmacol 429:161–176. (PMID: 11698039)
Dal S, De PT, Tatiane C et al (2019) Nociceptive mechanisms involved in the acute and chronic phases of a complex regional pain syndrome type 1 model in mice. Eur J Pharmacol 859:172555.
de Mos M, de Bruijn AGJ, Huygen FJPM et al (2007) The incidence of complex regional pain syndrome: a population-based study. Pain 129:12–20. (PMID: 17084977)
Dirckx M, Stronks DL, Wesseldijk F, Groeneweg JG (2015) Inflammation in cold complex regional pain syndrome. Acta Anesthesiol Scand Found 59:733–739.
Dobrivojevi M, Katarina Š (2015) Involvement of bradykinin in brain edema development after ischemic stroke. Pflugers Arch 467:201–212.
Dutra R (2016) Kinin receptors: key regulators of autoimmunity. Autoimmun Rev 16:192–207. (PMID: 27988430)
Dutra RC, Bento AF, Leite DFP et al (2013) The role of kinin B1 and B2 receptors in the persistent pain induced by experimental autoimmune encephalomyelitis (EAE) in mice: evidence for the involvement of astrocytes. Neurobiol Dis 54:82–93. (PMID: 23454198)
Ferreira J, Campos MM, Araújo R et al (2002) The use of kinin B1 and B2 receptor knockout mice and selective antagonists to characterize the nociceptive responses caused by kinins at the spinal level. Neuropharmacology 43:1188–1197. (PMID: 12504926)
Ferreira J, da Silva GL, Calixto JB (2004) Contribution of vanilloid receptors to the overt nociception induced by B2 kinin receptor activation in mice. Br J Pharmacol 141:787–794. (PMID: 149677371574249)
Flatters SJL, Bennett GJ (2004) Ethosuximide reverses paclitaxel- and vincristine-induced painful peripheral neuropathy. Pain 109:150–161. (PMID: 15082137)
Fox A, Wotherspoon G, McNair K et al (2003) Regulation and function of spinal and peripheral neuronal B1 bradykinin receptors in inflammatory mechanical hyperalgesia. Pain 104(683–91):6.
Gautam M, Prasoon P, Kumar R et al (2015) Role of neurokinin type 1 receptor in nociception at the periphery and the spinal level in the rat. Spinal Cord 54:172–182. (PMID: 26690860)
Gewehr C, Oliveira SM, Rossato MF et al (2013) Mechanisms involved in the nociception triggered by the venom of the armed spider Phoneutria nigriventer. PLoS Negl Trop Dis 7:e2198. https://doi.org/10.1371/journal.pntd.0002198. (PMID: 10.1371/journal.pntd.0002198236382103636088)
Gierthmühlen J, Binder A, Baron R (2014) Mechanism-based treatment in complex regional pain syndromes. Nat Rev Neurol 10:518–528. https://doi.org/10.1038/nrneurol.2014.140. (PMID: 10.1038/nrneurol.2014.14025134708)
Goh EL, Chidambaram S, Ma D (2017) Complex regional pain syndrome: a recent update. Burn Trauma 5:2.
Guthmiller K, Varacallo M (2019) Complex regional pain syndrome (CRPS), reflex sympathetic dystrophy (RSD). StatPearls Publishing, Treasure Island.
Hsiao H, Lin Y, Wang JC et al (2016) Hypoxia inducible factor-1 a inhibition produced anti-allodynia effect and suppressed in fl ammatory cytokine production in early stage of mouse complex regional pain syndrome model. Clin Exp Pharmacol Physiol 43:355–359. (PMID: 26711019)
Hylden JLK, Wilcox GL (1980) Intrathecal morphine in mice: a new technique. Eur J Pharmacol 67:313–316. (PMID: 6893963)
Ji RR, Kohno T, Moore KA, Woolf CJ (2003) Central sensitization and LTP: do pain and memory share similar mechanisms? Trends Neurosci 26:696–705. (PMID: 14624855)
Ji RR, Xu Z, Gao Y (2014) Emerging targets in neuroinflammation-driven chronic pain. Nat Publ Gr 13:533–548.
Kakoki M, Smithies O (2009) The kallikreinkinin system in health and in diseases of the kidney. Kidney Int 75:1019–1030. (PMID: 191906763733452)
Kim Y, Kim I, Yoon M (2015) Neuroscience letters antiallodynic effect through spinal endothelin-B receptor antagonism in rat models of complex regional pain syndrome. Neurosci Lett 584:45–49. (PMID: 25451723)
Klafke JZ, da Silva MA, Rossato MF et al (2016) Acute and chronic nociceptive phases observed in a rat hind paw ischemia/reperfusion model depend on different mechanisms. Pflugers Arch Eur J Physiol 468:229–241.
Kohno T, Wang H, Amaya F (2008) Bradykinin enhances AMPA and NMDA receptor activity in spinal cord dorsal horn neurons by activating multiple kinases to produce pain hypersensitivity. J Neurosci 28:4533–4540. (PMID: 184345322653863)
Koivisto A, Jalava N, Bratty R, Pertovaara A (2018) TRPA1 antagonists for pain relief. Pharmaceuticals 11:1–19.
Kwak K, Han C, Lee S et al (2009) Reactive oxygen species in rats with chronic post-ischemia pain 1. Acta Anaesthesiol Scand 53:648–656. (PMID: 19419360)
Lai J, Luo M, Chen Q et al (2006) Dynorphin A activates bradykinin receptors to maintain neuropathic pain. Nat Neurosci 9:1534–1540. (PMID: 17115041)
Latremoliere A, Woolf C (2009) Central sensitization: a generator of pain hypersensitivity by central neural plasticity. Neural Plast 10:895–926.
Lee JW, Lee SK, Choy WS (2018) Complex regional pain syndrome type 1: diagnosis and management. J Hand Surg Asian-Pac 23:1–10.
Levy D, Zochodne DW (2000) Increased mRNA expression of the B1 and B2 bradykinin receptors and antinociceptive effects of their antagonists in an animal model of neuropathic pain. Pain 86:265–271. (PMID: 10812256)
Lopes P, Couture R (1992) Cardiovascular responses elicited by intrathecal kinins in the conscious rat. Eur J Pharmacol 210:137–147. (PMID: 1601054)
Luiz AP, Schroeder SD, Rae GA et al (2015) Contribution and interaction of kinin receptors and dynorphin A in a model of trigeminal neuropathic pain in mice. Neuroscience 300:189–200. (PMID: 25982562)
Marceau F, Regoli D (2004) Bradykinin receptor ligands: therapeutic perspectives. Nat Rev Drug Discov 3:845–852. (PMID: 15459675)
Marinus J, Moseley L, Birklein F et al (2011) Syndrome—current state of the art. Lancet Neurol 10:637–648. (PMID: 216839295511749)
Martins DF, Soldi F, Stramosk J et al (2013) High-intensity swimming exercise reduces neuropathic pain in an animal model of complex regional pain syndrome type I: evidence for a role of the adenosinergic system. Neuroscience 234:69–76. (PMID: 23291454)
Matsuzaki S, Hayashi I, Nara Y et al (2002) Role of kinin and prostaglandin in cutaneous thermal nociception. Int Immunopharmacol 2:2005–2012. (PMID: 12489814)
Millecamps M, Laferrière A, Ragavendran JV, Laura S (2015) Role of peripheral endothelin receptors in an animal model of complex regional pain syndrome type 1 (CRPS-I). Pain 151:174–183.
Minville V, Mouledous L, Jaafar A et al (2019) Tibial post fracture pain is reduced in kinin receptors deficient mice and blunted by kinin receptor antagonists. J Transl Med 17:1–12.
De MM, Huygen FJPM, Stricker BHC et al (2009) The association between ACE inhibitors and the complex regional pain syndrome: suggestions for a neuro-inflammatory pathogenesis of CRPS. Pain 142:218–224.
Munnikes RJM, Muis C, Boersma M et al (2005) Intermediate stage complex regional pain syndrome type 1 is unrelated to proinflammatory cytokines. Med Inflamm 6:366–372.
Ohnishi M, Yukawa R, Akagi M et al (2019) Bradykinin and interleukin-1 β synergistically increase the expression of cyclooxygenase-2 through the RNA-binding protein HuR in rat dorsal root ganglion cells. Neurosci Lett 694:215–219. (PMID: 30528878)
Parkitny L, McAuley JH, Di Pietro F et al (2013) Inflammation in complex regional pain syndrome: a systematic review and meta-analysis. Neurology 80:106–117. (PMID: 232670313589200)
Petcu M, Dias JP, Ongali B et al (2008) Role of kinin B 1 and B 2 receptors in a rat model of neuropathic pain. Int Immunopharmacol 8:188–196. (PMID: 18182225)
Qadri F, Bader M (2017) Kinin B1 receptors as a therapeutic target for inflammation. Expert Opin Ther Targets 22:31–44. (PMID: 29168929)
Quintão N, Rocha L, Silva G et al (2019) The kinin B1 and B2 receptors and TNFR1/p55 axis on neuropathic pain in the mouse brachial plexus. Inflammopharmacology 27:573–586. (PMID: 30820720)
Quintão NLM, Passos GF, Medeiros R et al (2008) Neuropathic pain-like behavior after brachial plexus avulsion in mice: the relevance of kinin B1 and B2 receptors. J Neurosci 28:2856–2863. (PMID: 183374166670668)
Reimer M, Rempe T, Diedrichs C et al (2016) Sensitization of the nociceptive system in complex regional pain syndrome. PLoS ONE 11:1–25.
Rupniak N, Boyce S, Webb J et al (1997) Effects of the bradykinin B1 receptor antagonist des-Arg9[Leu8]bradykinin and genetic disruption of the B2 receptor on nociception in rats and mice. Pain 71:89–97. (PMID: 9200178)
Sabsovich I, Guo T, Wei T et al (2008) TNF signaling contributes to the development of nociceptive sensitization in a tibia fracture model of complex regional pain syndrome type I. Pain 137:507–519. (PMID: 18035493)
Sandroni P, Benrud-larson LM, Mcclelland RL, Low PA (2003) Complex regional pain syndrome type I: incidence and prevalence in Olmsted county, a population-based study. Pain 103:199–207. (PMID: 12749974)
Schinkel C, Scherens A, Koller M et al (2009) Systemic inflammatory mediators in post-traumatic complex regional pain syndrome (CRPS I)—longitudinal investigations and differences to control groups. Eur J Med Res 14:130–135. (PMID: 193802843352062)
Schuelert N, Just S, Corradini L et al (2015) The bradykinin B1 receptor antagonist BI113823 reverses inflammatory hyperalgesia by desensitization of peripheral and spinal neurons. Eur J Pain (United Kingdom) 19:132–142.
Sharma JN, Buchanan WW (1994) Pathogenic responses of bradykinin system in chronic inflammatory rheumatoid disease. Exp Toxicol Pathol 46:421–433. (PMID: 7703672)
Shughrue PJ, Ky B, Austin CP (2003) Localization of B1 bradykinin receptor mRNA in the primate brain and spinal cord: an in situ hybridization study. J Comp Neurol 465:372–384. (PMID: 12966562)
Soley da BS, Morais RL, Pesquero MB et al (2016) Kinin receptors in skin wound healing. J Dermatol Sci 82:95–105.
Steranka L, Manning D, DeHaas C et al (1988) Bradykinin as a pain mediator: receptors are localized to sensory neurons, and antagonists have analgesic actions. Proc Natl Acad Sci 85:3245–3249. (PMID: 2896357)
Tang C, Li J, Tai W et al (2017) Sex differences in complex regional pain syndrome type-I. J Pain Res 10:1811–1819. (PMID: 288312695548282)
Wang D, Couture R, Hong Y (2014) Activated microglia in the spinal cord underlies diabetic neuropathic pain. Eur J Pharmacol 728:59–66. (PMID: 24508519)
Wang H, Kohno T, Amaya F et al (2005) Bradykinin produces pain hypersensitivity by potentiating spinal cord glutamatergic synaptic transmission. J Neurosci 25:7986–7992. (PMID: 161357556725443)
Wasner G, Schattschneider J, Binder A et al (2003) Review complex regional pain syndrome ± diagnostic, mechanisms, CNS involvement and therapy. Spinal Cord 41:61–75. (PMID: 12595868)
Woolf CJ (2011) Central sensitization: implications for the diagnosis and treatment of pain. Pain 152:S2–S15. https://doi.org/10.1016/j.pain.2010.09.030. (PMID: 10.1016/j.pain.2010.09.03020961685)
Yoshino O, Kobayashi M, Andoh T et al (2018) Bradykinin system is involved in endometriosis-related pain through endothelin-1 production. Eur J Pain 22:501–510. (PMID: 29034546)
Yu S, Ouyang A (2009) TRPA1 in bradykinin-induced mechanical hypersensitivity of vagal C fibers in guinea pig esophagus. Am J Physiol 296:G255–G265.
فهرسة مساهمة: Keywords: Bradykinin receptor antagonists; Chronic pain; Hyperalgesia; Inflammation; Inflammatory mediators; Kinins
المشرفين على المادة: 0 (Bradykinin Receptor Antagonists)
0 (Cholinesterase Inhibitors)
0 (Receptors, Bradykinin)
تواريخ الأحداث: Date Created: 20200331 Date Completed: 20210811 Latest Revision: 20210811
رمز التحديث: 20231215
DOI: 10.1007/s10571-020-00832-3
PMID: 32222846
قاعدة البيانات: MEDLINE
الوصف
تدمد:1573-6830
DOI:10.1007/s10571-020-00832-3