دورية أكاديمية

Intertidal gobies acclimate rate of luminance change for background matching with shifts in seasonal temperature.

التفاصيل البيبلوغرافية
العنوان: Intertidal gobies acclimate rate of luminance change for background matching with shifts in seasonal temperature.
المؤلفون: da Silva CRB; School of Biological Sciences, The University of Queensland, St Lucia, QLD, Australia.; School of Biological Sciences, Monash University, Clayton, Vic., Australia., van den Berg CP; School of Biological Sciences, The University of Queensland, St Lucia, QLD, Australia., Condon ND; Institute for Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia., Riginos C; School of Biological Sciences, The University of Queensland, St Lucia, QLD, Australia., Wilson RS; School of Biological Sciences, The University of Queensland, St Lucia, QLD, Australia., Cheney KL; School of Biological Sciences, The University of Queensland, St Lucia, QLD, Australia.; Queensland Brain Institute, The University of Queensland, St Lucia, QLD, Australia.
المصدر: The Journal of animal ecology [J Anim Ecol] 2020 Jul; Vol. 89 (7), pp. 1735-1746. Date of Electronic Publication: 2020 Apr 13.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Blackwell Country of Publication: England NLM ID: 0376574 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1365-2656 (Electronic) Linking ISSN: 00218790 NLM ISO Abbreviation: J Anim Ecol Subsets: MEDLINE
أسماء مطبوعة: Publication: Oxford : Blackwell
Original Publication: Oxford, British Ecological Society.
مواضيع طبية MeSH: Ecosystem* , Fishes*, Acclimatization ; Animals ; Predatory Behavior ; Seasons ; Temperature
مستخلص: Rate of colour change and background matching capacity are important functional traits for avoiding predation and hiding from prey. Acute changes in environmental temperature are known to impact the rate at which animals change colour, and therefore may affect their survival. Many ectotherms have the ability to acclimate performance traits such as locomotion, metabolic rate and growth rate with changes in seasonal temperature. However, it remains unclear how other functional traits that are directly linked to behaviour and survival respond to long-term changes in temperature (within an individual's lifetime). We assessed whether the rate of colour change is altered by long-term changes in temperature (seasonal variation) and if rate of colour change can acclimate to seasonal thermal conditions. We used an intertidal rock-pool goby Bathygobius cocosensis, to test this and exposed individuals to representative seasonal mean temperatures (16 or 31°C, herein referred to cold- and warm-exposed fish respectively) for 9 weeks and then tested their rate of luminance change when placed on white and black backgrounds at acute test temperatures 16 and 31°C. We modelled rate of luminance change using the visual sensitives of a coral trout Plectropmus leopardus to determine how well gobies matched their backgrounds in terms of luminance contrast to a potential predator. After exposure to long-term seasonal conditions, the warm-exposed fish had faster rates of luminance change and matched their background more closely when tested at 31 than at 16°C. Similarly, the cold-exposed fish had faster rates of luminance change and matched their backgrounds more closely at 16°C than at 31°C. This demonstrates that rate of luminance change can be adjusted to compensate for long-term changes in seasonal temperature. This is the first study to show that animals can acclimate rate of colour change for background matching to seasonal thermal conditions. We also show that rapid changes in acute temperature reduce background matching capabilities. Stochastic changes in climate are likely to affect the frequency of predator-prey interactions which may have substantial knock-on effects throughout ecosystems.
(© 2020 British Ecological Society.)
References: Abernathy, V. E., Troscianko, J., & Langmore, N. E. (2017). Egg mimicry by the Pacific koel: Mimicry of one host facilitates exploitation of other hosts with similar egg types. Journal of Avian Biology, 48, 1414-1424. https://doi.org/10.1111/jav.01530.
Angilletta, M. J. (2009). Thermal adaptation: A theoretical and empirical synthesis. Thermal adaptation: A theoretical and empirical synthesis (pp. 1-290). New York, NY: Oxford University Press Inc.
Auerswald, L., Freier, U., Lopata, A., & Meyer, B. (2008). Physiological and morphological colour change in Antarctic krill, Euphausia superba: A field study in the Lazarev Sea. Journal of Experimental Biology, 211, 3850-3858. https://doi.org/10.1242/jeb.024232.
Barclay, C. (1994). Efficiency of fast and slow-twitch muscles of the mouse performing cyclic contractions. Journal of Experimental Biology, 193, 65-78.
Beaman, J. E., White, C. R., & Seebacher, F. (2016). Evolution of plasticity: Mechanistic link between development and reversible acclimation. Trends in Ecology & Evolution, 31, 237-249. https://doi.org/10.1016/j.tree.2016.01.004.
Camargo, C. R., Visconti, M., & Castrucci, A. (1999). Physiological color change in the bullfrog, Rana catesbeiana. Journal of Experimental Zoology, 283, 160-169. https://doi.org/10.1002/(SICI)1097-010X(19990201)283:2<160:AID-JEZ6>3.0.CO;2-T.
Caro, T., Sherratt, T. N., & Stevens, M. (2016). The ecology of multiple colour defences. Evolutionary Ecology, 30, 797-809. https://doi.org/10.1007/s10682-016-9854-3.
Cheney, K. L., Cortesi, F., & Nilsson Sköld, H. (2017). Regulation, constraints and benefits of colour plasticity in a mimicry system. Biological Journal of the Linnean Society, 122, 385-393. https://doi.org/10.1093/biolinnean/blx057.
Cole, W. H. (1939). The effect of temperature on the color change of Fundulus in response to black and to white backgrounds in fresh and in sea water. Journal of Experimental Zoology, 80, 167-172. https://doi.org/10.1002/jez.1400800202.
Cortesi, F., Musilová, Z., Stieb, S. M., Hart, N. S., Siebeck, U. E., Cheney, K. L., … Marshall, N. J. (2016). From crypsis to mimicry: Changes in colour and the configuration of the visual system during ontogenetic habitat transitions in a coral reef fish. Journal of Experimental Biology, 219, 2545-2558. https://doi.org/10.1242/jeb.139501.
Cronin, T. W., Johnsen, S., Marshall, N. J., & Warrant, E. J. (2014). Visual ecology. Princeton, NJ: Princeton University Press.
da Silva, C. R. B., Riginos, C., & Wilson, R. S. (2019). An intertidal fish shows thermal acclimation despite living in a rapidly fluctuating environment. Journal of Comparative Physiology B, 189, 385-398. https://doi.org/10.1007/s00360-019-01212-0.
da Silva, C. R. B., van den Berg, C. P., Condon, N. D., Riginos, C., Wilson, R. S., & Cheney, K. L. (2020). Data from: Intertidal gobies acclimate rate of luminance change for background matching with shifts in seasonal temperature. Dryad Digital Repository, https://doi.org/10.5061/dryad.zkh189371.
Deutsch, C. A., Tewksbury, J. J., Huey, R. B., Sheldon, K. S., Ghalambor, C. K., Haak, D. C., & Martin, P. R. (2008). Impacts of climate warming on terrestrial ectotherms across latitude. Proceedings of the National Academy of Sciences of the United States of America, 105, 6668-6672. https://doi.org/10.1073/pnas.0709472105.
DeWitt, T. J. (1998). Costs and limits of phenotypic plasiticty: Tests with predator-induced morphology and life history in a freshwater snail. Journal of Experimental Biology, 11, 465-480. https://doi.org/10.1046/j.1420-9101.1998.11040465.x.
Duarte, R. C., Flores, A. A., & Stevens, M. (2017). Camouflage through colour change: Mechanisms, adaptive value and ecological significance. Philosophical Transactions of the Royal Society B: Biological Sciences, 372, 20160342. https://doi.org/10.1098/rstb.2016.0342.
Faraway, J. (2016). Extending the linear model with R: Generalized linear, mixed effects and nonparametric regression models. Boca Raton, FL: Chapman and Hall/CRC.
FitzGerald, J. L., Sheehan, T. F., & Kocik, J. F. (2004). Visibility of visual implant elastomer tags in Atlantic salmon reared for two years in marine net-pens. North American Journal of Fisheries Management, 24, 222-227. https://doi.org/10.1577/M02-138.
Gabriel, W. (2005). How stress selects for reversible phenotypic plasticity. Journal of Evolutionary Biology, 18, 873-883. https://doi.org/10.1111/j.1420-9101.2005.00959.x.
Gunderson, A. R., Tsukimura, B., & Stillman, J. H. (2017). Indirect effects of global change: From physiological and behavioural mechanisms to ecological consequences. Integrative and Comparative Biology, 57, 48-54. https://doi.org/10.1093/icb/icx056.
Hammill, E., Wilson, R. S., & Johnston, I. A. (2004). Sustained swimming performance and muscle structure are altered by thermal acclimation in male mosquitofish. Journal of Thermal Biology, 29, 251-257. https://doi.org/10.1016/j.jtherbio.2004.04.002.
Helmuth, B. S., & Hofmann, G. E. (2001). Microhabitats, thermal heterogeneity, and patterns of physiological stress in the rocky intertidal zone. The Biological Bulletin, 201, 374-384. https://doi.org/10.2307/1543615.
Hoffmann, A. A., & Sgro, C. M. (2011). Climate change and evolutionary adaptation. Nature, 470, 479. https://doi.org/10.1038/nature09670.
King, R. B., Hauff, S., & Phillips, J. B. (1994). Physiological color change in the green treefrog: Responses to background brightness and temperature. Copeia, 422-432. https://doi.org/10.2307/1446990.
Lin, Q., Lin, J., & Huang, L. (2009). Effects of substrate color, light intensity and temperature on survival and skin color change of juvenile seahorses, Hippocampus erectus Perry, 1810. Aquaculture, 298, 157-161. https://doi.org/10.1016/j.aquaculture.2009.10.015.
Losey, G., McFarland, W., Loew, E., Zamzow, J., Nelson, P., & Marshall, N. (2003). Visual biology of Hawaiian coral reef fishes. I. Ocular transmission and visual pigments. Copeia, 2003, 433-454. https://doi.org/10.1643/01-053.
Lythgoe, J. N. (1979). The ecology of vision. Oxford, UK: Clarendon Press.
Malard, L. A., McGuigan, K., & Riginos, C. (2016). Site fidelity, size, and morphology may differ by tidal position for an intertidal fish, Bathygobius cocosensis (Perciformes-Gobiidae), in Eastern Australia. PeerJ, 4, e2263. https://doi.org/10.7717/peerj.2263.
Nishi, H., & Fujii, R. (1992). Novel receptors for melatonin that mediate pigment dispersion are present in some melanophores of the pencil fish (Nannostomus). Comparative Biochemistry and Physiology Part C: Comparative Pharmacology, 103, 263-268. https://doi.org/10.1016/0742-8413(92)90005-R.
Ovais, M., Srivastava, S. K., Sumoona, S., & Mubashshir, M. (2015). Evidence for the presence of novel β-melatonin receptors along with classical α-melatonin receptors in the fish Rasbora daniconius (Ham.). Journal of Receptors and Signal Transduction, 35, 238-248. https://doi.org/10.3109/10799893.2014.951896.
Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D., & Team, R. C. (2018). nlme: Linear and nonlinear mixed effects models. R package version 3.1-137. R Found. Stat. Comput. https://CRAN. R-project.
R Core Team. (2018). R foundation for statistical computing. Vienna, Austria: 2014. R: A language and environment for statistical computing, 2013.
Ruxton, G. D., Allen, W. L., Sherratt, T. N., & Speed, M. P. (2018). Avoiding attack: The evolutionary ecology of crypsis, aposematism, and mimicry. Oxford, UK: Oxford University Press.
Schulte, P. M., Healy, T. M., & Fangue, N. A. (2011). Thermal performance curves, phenotypic plasticity, and the time scales of temperature exposure. Integrative and Comparative Biology, 51, 691-702. https://doi.org/10.1093/icb/icr097.
Seebacher, F., Davison, W., Lowe, C. J., & Franklin, C. E. (2005). A falsification of the thermal specialization paradigm: Compensation for elevated temperatures in Antarctic fishes. Biology Letters, 1, 151-154. https://doi.org/10.1098/rsbl.2004.0280.
Seebacher, F., White, C. R., & Franklin, C. E. (2015). Physiological plasticity increases resilience of ectothermic animals to climate change. Nature Climate Change, 5, 61. https://doi.org/10.1038/nclimate2457.
Siddiqi, A., Cronin, T. W., Loew, E. R., Vorobyev, M., & Summers, K. (2004). Interspecific and intraspecific views of color signals in the strawberry poison frog Dendrobates pumilio. Journal of Experimental Biology, 207, 2471-2485. https://doi.org/10.1242/jeb.01047.
Sköld, H. N., Aspengren, S., Cheney, K. L., & Wallin, M. (2016). Fish chromatophores-From molecular motors to animal behavior. In L. Galluzzi (Ed.), International review of cell and molecular biology (pp. 171-219). San Diego, CA: Elsevier.
Sköld, H. N., Aspengren, S., & Wallin, M. (2013). Rapid color change in fish and amphibians-function, regulation, and emerging applications. Pigment Cell & Melanoma Research, 26, 29-38. https://doi.org/10.1111/pcmr.12040.
Smithers, S. P., Rooney, R., Wilson, A., & Stevens, M. (2018). Rock pool fish use a combination of colour change and substrate choice to improve camouflage. Animal Behaviour, 144, 53-65. https://doi.org/10.1016/j.anbehav.2018.08.004.
Smithers, S. P., Wilson, A., & Stevens, M. (2017). Rock pool gobies change their body pattern in response to background features. Biological Journal of the Linnean Society, 121, 109-121. https://doi.org/10.1093/biolinnean/blw022.
Somero, G. N. (2002). Thermal physiology and vertical zonation of intertidal animals: Optima, limits, and costs of living. Integrative and Comparative Biology, 42, 780-789. https://doi.org/10.1093/icb/42.4.780.
Stevens, M. (2016). Color change, phenotypic plasticity, and camouflage. Frontiers in Ecology and Evolution, 4, 51. https://doi.org/10.3389/fevo.2016.00051.
Stevens, M., Lown, A. E., & Denton, A. M. (2014). Rockpool gobies change colour for camouflage. PLoS ONE, 9, e110325. https://doi.org/10.1371/journal.pone.0110325.
Stevens, M., & Merilaita, S. (2009). Animal camouflage: Current issues and new perspectives. Philosophical Transactions of the Royal Society of London Series B: Biological Sciences, 364, 423-427. https://doi.org/10.1098/rstb.2008.0217.
Stevens, M., Troscianko, J., Wilson-Aggarwal, J. K., & Spottiswoode, C. N. (2017). Impreovement of individual camouflage through background choice in ground-nesting birds. Nature Ecolosgy & Evolution, 1, 1325-1333. https://doi.org/10.1038/s41559-017-0256-x.
Troscianko, J., & Stevens, M. (2015). Image calibration and analysis toolbox-A free software suite for objectively measuring reflectance, colour and pattern. Methods in Ecology and Evolution, 6, 1320-1331. https://doi.org/10.1111/2041-210X.12439.
Troscianko, J., Wilson-Aggarwal, J., Stevens, M., & Spottiswoode, C. E. (2016). Camouflate predicts survival in ground-nesting birds. Scientific Reports, 6, 19966. https://doi.org/10.1038/srep19966.
Vorobyev, M., & Osorio, D. (1998). Receptor noise as a determinant of colour thresholds. Proceedings of the Royal Society of London Series B: Biological Sciences, 265, 351-358. https://doi.org/10.1098/rspb.1998.0302.
White, G. E., & Brown, C. (2015). Microhabitat use affects goby (Gobiidae) cue choice in spatial learning task. Journal of Fish Biology, 86, 1305-1318. https://doi.org/10.1111/jfb.12638.
Wickham, H. (2016). ggplot2: Elelant graphics for data analysis. New York, NY: Springer-Verlag. ISBN: 978-3-319-24277-4.
Wilson, R. S., Condon, C. H., & Johnston, I. A. (2007). Consequences of thermal acclimation for the mating behaviour and swimming performance of female mosquito fish. Philosophical Transactions of the Royal Society B: Biological Sciences, 362, 2131-2139. https://doi.org/10.1098/rstb.2007.2106.
Wilson, R. S., & Franklin, C. E. (2002). Testing the beneficial acclimation hypothesis. Trends in Ecology & Evolution, 17, 66-70. https://doi.org/10.1016/S0169-5347(01)02384-9.
Zeileis, A., & Hothorn, T. (2002). Diagnostic checking in regression relationships. R News, 2, 1-10.
فهرسة مساهمة: Keywords: acclimation; background matching; camouflage; colour change; intertidal; luminance change; plasticity; thermal performance
سلسلة جزيئية: Dryad 10.5061/dryad.zkh189371
تواريخ الأحداث: Date Created: 20200401 Date Completed: 20210226 Latest Revision: 20210226
رمز التحديث: 20231215
DOI: 10.1111/1365-2656.13226
PMID: 32227334
قاعدة البيانات: MEDLINE
الوصف
تدمد:1365-2656
DOI:10.1111/1365-2656.13226