دورية أكاديمية

pH-Controlled Coacervate-Membrane Interactions within Liposomes.

التفاصيل البيبلوغرافية
العنوان: pH-Controlled Coacervate-Membrane Interactions within Liposomes.
المؤلفون: Last MGF; Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands., Deshpande S; Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands.; Physical Chemistry and Soft Matter, Wageningen University and Research, Stippenweg 4, 6708 WE Wageningen, The Netherlands., Dekker C; Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands.
المصدر: ACS nano [ACS Nano] 2020 Apr 28; Vol. 14 (4), pp. 4487-4498. Date of Electronic Publication: 2020 Apr 07.
نوع المنشور: Journal Article; Research Support, Non-U.S. Gov't
اللغة: English
بيانات الدورية: Publisher: American Chemical Society Country of Publication: United States NLM ID: 101313589 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1936-086X (Electronic) Linking ISSN: 19360851 NLM ISO Abbreviation: ACS Nano Subsets: MEDLINE
أسماء مطبوعة: Original Publication: Washington D.C. : American Chemical Society
مواضيع طبية MeSH: Artificial Cells* , Liposomes*, Hydrogen-Ion Concentration ; Hydrophobic and Hydrophilic Interactions ; Microfluidics
مستخلص: Membraneless organelles formed by liquid-liquid phase separation are dynamic structures that are employed by cells to spatiotemporally regulate their interior. Indeed, complex coacervation-based phase separation is involved in a multitude of biological tasks ranging from photosynthesis to cell division to chromatin organization, and more. Here, we use an on-chip microfluidic method to control and study the formation of membraneless organelles within liposomes, using pH as the main control parameter. We show that a transmembrane proton flux that is created by a stepwise change in the external pH can readily bring about the coacervation of encapsulated components in a controlled manner. We employ this strategy to induce and study electrostatic as well as hydrophobic interactions between the coacervate and the lipid membrane. Electrostatic interactions using charged lipids efficiently recruit coacervates to the membrane and restrict their movement along the inner leaflet. Hydrophobic interactions via cholesterol-tagged RNA molecules provide even stronger interactions, causing coacervates to wet the membrane and affect the local lipid-membrane structure, reminiscent of coacervate-membrane interactions in cells. The presented technique of pH-triggered coacervation within cell-sized liposomes may find applications in synthetic cells and in studying biologically relevant phase separation reactions in a bottom-up manner.
References: Cell. 2017 Sep 21;171(1):148-162.e19. (PMID: 28938114)
Science. 2018 Jul 27;361(6400):. (PMID: 29930091)
Angew Chem Int Ed Engl. 2020 Apr 6;59(15):5950-5957. (PMID: 31943629)
Anal Bioanal Chem. 2017 Sep;409(24):5779-5787. (PMID: 28762066)
Mol Pharm. 2019 Jun 3;16(6):2494-2501. (PMID: 30994358)
Nat Chem. 2016 Jun;8(6):569-75. (PMID: 27219701)
J Am Chem Soc. 2005 Apr 6;127(13):4888-94. (PMID: 15796553)
Nat Chem. 2016 Feb;8(2):129-37. (PMID: 26791895)
Neuron. 2006 Sep 21;51(6):685-90. (PMID: 16982415)
Langmuir. 2012 Jun 12;28(23):8721-9. (PMID: 22578030)
Lab Chip. 2018 Sep 11;18(18):2849-2853. (PMID: 30091771)
Biophys J. 2009 Jun 3;96(11):4581-91. (PMID: 19486680)
Cell. 2015 Aug 27;162(5):1066-77. (PMID: 26317470)
Nature. 2012 Mar 07;483(7389):336-40. (PMID: 22398450)
Curr Opin Struct Biol. 2016 Dec;41:180-186. (PMID: 27552079)
Mol Cell. 2015 Mar 5;57(5):936-947. (PMID: 25747659)
J Cell Biol. 2013 Apr 29;201(3):361-72. (PMID: 23629963)
Nat Commun. 2018 Jan 15;9(1):212. (PMID: 29335514)
Proc Natl Acad Sci U S A. 2015 Jun 9;112(23):7189-94. (PMID: 26015579)
Nature. 2017 Jul 13;547(7662):241-245. (PMID: 28636597)
Nat Commun. 2019 Apr 17;10(1):1800. (PMID: 30996302)
Nat Commun. 2015 Aug 19;6:8088. (PMID: 26286827)
Science. 2016 Apr 29;352(6285):595-9. (PMID: 27056844)
Biophys J. 1987 May;51(5):839-41. (PMID: 19431698)
Cell. 2016 Sep 8;166(6):1572-1584.e16. (PMID: 27594427)
Nat Rev Mol Cell Biol. 2017 May;18(5):285-298. (PMID: 28225081)
Angew Chem Int Ed Engl. 2014 Jul 7;53(28):7354-9. (PMID: 24862735)
Nat Chem. 2011 Aug 07;3(9):720-4. (PMID: 21860462)
Science. 2019 Mar 8;363(6431):1098-1103. (PMID: 30846600)
Biochem J. 2013 Jan 15;449(2):319-31. (PMID: 23240612)
Mol Cell Biol. 2001 Aug;21(16):5408-16. (PMID: 11463823)
Science. 2018 Jul 27;361(6400):412-415. (PMID: 29930094)
Science. 2009 Jun 26;324(5935):1729-32. (PMID: 19460965)
Development. 2010 Apr;137(8):1305-14. (PMID: 20223759)
Elife. 2014 Oct 15;3:e03695. (PMID: 25318069)
Nat Protoc. 2018 May;13(5):856-874. (PMID: 29599442)
Philos Trans R Soc Lond B Biol Sci. 2012 Sep 19;367(1602):2513-6. (PMID: 22889903)
Lab Chip. 2019 Feb 26;19(5):837-844. (PMID: 30698187)
Science. 2017 Sep 22;357(6357):. (PMID: 28935776)
Chem Rev. 2013 Apr 10;113(4):2733-811. (PMID: 23570618)
Curr Opin Struct Biol. 2017 Jun;44:18-30. (PMID: 27838525)
Cell. 2019 Jan 24;176(3):419-434. (PMID: 30682370)
Proc Natl Acad Sci U S A. 1983 Jan;80(1):165-8. (PMID: 6296864)
Proc Natl Acad Sci U S A. 2013 Jul 16;110(29):11692-7. (PMID: 23818642)
Curr Genet. 2019 Jun;65(3):691-694. (PMID: 30603876)
J Mol Biol. 2018 Nov 2;430(23):4754-4761. (PMID: 29913159)
Cell. 2015 Sep 24;163(1):123-33. (PMID: 26406374)
Nat Commun. 2016 Jan 22;7:10447. (PMID: 26794442)
Nat Commun. 2018 Nov 29;9(1):5076. (PMID: 30498228)
Annu Rev Cell Dev Biol. 2014;30:39-58. (PMID: 25288112)
Science. 2018 Jul 27;361(6400):. (PMID: 29930090)
Biochemistry. 2018 May 1;57(17):2415-2423. (PMID: 29323488)
Dev Cell. 2011 Jul 19;21(1):14-6. (PMID: 21763600)
Langmuir. 2012 Nov 13;28(45):15947-57. (PMID: 23083137)
Trends Cell Biol. 2018 Jun;28(6):420-435. (PMID: 29602697)
Elife. 2019 Jul 03;8:. (PMID: 31268421)
Soft Matter. 2016 Aug 21;12(31):6669-74. (PMID: 27427090)
Cell. 2019 Oct 31;179(4):923-936.e11. (PMID: 31675499)
Science. 2019 Mar 8;363(6431):1093-1097. (PMID: 30846599)
Trends Cell Biol. 2016 Jul;26(7):547-558. (PMID: 27051975)
Cell Commun Signal. 2016 Jan 05;14:1. (PMID: 26727894)
Cell. 2012 Jun 8;149(6):1188-91. (PMID: 22682242)
J Bioenerg Biomembr. 1987 Oct;19(5):457-79. (PMID: 2447068)
Angew Chem Int Ed Engl. 2017 Aug 7;56(33):9736-9740. (PMID: 28658517)
فهرسة مساهمة: Keywords: coacervates; liposomes; liquid−liquid phase separation; membranes; microfluidics
المشرفين على المادة: 0 (Liposomes)
تواريخ الأحداث: Date Created: 20200403 Date Completed: 20210514 Latest Revision: 20210514
رمز التحديث: 20221213
مُعرف محوري في PubMed: PMC7199211
DOI: 10.1021/acsnano.9b10167
PMID: 32239914
قاعدة البيانات: MEDLINE
الوصف
تدمد:1936-086X
DOI:10.1021/acsnano.9b10167