دورية أكاديمية

Distinct inactivated bacterial-based immune modulators vary in their therapeutic efficacies for treating disease based on the organ site of pathology.

التفاصيل البيبلوغرافية
العنوان: Distinct inactivated bacterial-based immune modulators vary in their therapeutic efficacies for treating disease based on the organ site of pathology.
المؤلفون: Kalyan S; Qu Biologics Inc., Burnaby, BC, V5G 4X4, Canada.; Department of Medicine, University of British Columbia, Vancouver, Canada., Bazett M; Qu Biologics Inc., Burnaby, BC, V5G 4X4, Canada., Sham HP; Qu Biologics Inc., Burnaby, BC, V5G 4X4, Canada., Bosiljcic M; Qu Biologics Inc., Burnaby, BC, V5G 4X4, Canada., Luk B; Qu Biologics Inc., Burnaby, BC, V5G 4X4, Canada., Dhanji S; Qu Biologics Inc., Burnaby, BC, V5G 4X4, Canada., Costa AM; Department of Microbiology and Immunology and Department of Medical Education, Geisel School of Medicine at Dartmouth, Hanover, NH, 03755, USA., Wong SWY; Qu Biologics Inc., Burnaby, BC, V5G 4X4, Canada., Netea MG; Department of Internal Medicine, Radboud University Medical Center, Nijmegen, Netherlands., Mullins DW; Department of Microbiology and Immunology and Department of Medical Education, Geisel School of Medicine at Dartmouth, Hanover, NH, 03755, USA., Gunn H; Qu Biologics Inc., Burnaby, BC, V5G 4X4, Canada. hal@qubiologics.com.
المصدر: Scientific reports [Sci Rep] 2020 Apr 03; Vol. 10 (1), pp. 5901. Date of Electronic Publication: 2020 Apr 03.
نوع المنشور: Journal Article; Research Support, Non-U.S. Gov't
اللغة: English
بيانات الدورية: Publisher: Nature Publishing Group Country of Publication: England NLM ID: 101563288 Publication Model: Electronic Cited Medium: Internet ISSN: 2045-2322 (Electronic) Linking ISSN: 20452322 NLM ISO Abbreviation: Sci Rep Subsets: MEDLINE
أسماء مطبوعة: Original Publication: London : Nature Publishing Group, copyright 2011-
مواضيع طبية MeSH: Immunity, Innate*, Bacterial Vaccines/*immunology , Cancer Vaccines/*immunology , Immunotherapy/*methods , Neoplasms/*therapy, Adaptive Immunity ; Animals ; Bacterial Vaccines/administration & dosage ; Cancer Vaccines/administration & dosage ; Cell Line, Tumor/transplantation ; Disease Models, Animal ; Female ; Humans ; Immunogenicity, Vaccine ; Immunologic Memory ; Injections, Subcutaneous ; Mice ; Neoplasms/immunology ; Treatment Outcome ; Vaccines, Inactivated/administration & dosage ; Vaccines, Inactivated/immunology
مستخلص: Recent developments in understanding how the functional phenotype of the innate immune system is programmed has led to paradigm-shifting views on immunomodulation. These advances have overturned two long-held dogmas: (1) only adaptive immunity confers immunological memory; and, (2) innate immunity lacks specificity. This work describes the observation that innate immune effector cells appear to be differentially recruited to specific pathological sites when mobilized by distinct inactivated bacterial-based stimuli administered subcutaneously. The studies presented suggest that the immune system, upon detecting the first signs of a potential infection by a specific pathogen, tends to direct its resources to the compartment from which that pathogen is most likely originating. The findings from this work puts forth the novel hypothesis that the immunotherapeutic efficacy of a microbial-based stimulus for innate immune mobilization depends on the correct selection of the microbial species used as the stimulant and its relationship to the organ in which the pathology is present.
References: Power, D. The local distribution of cancer and cancer houses. Practitioner 62, 418–429 (1899).
Jessy, T. Immunity over inability: The spontaneous regression of cancer. J. Nat. Sci. Biol. Med. 2, 43–49 (2011). (PMID: 10.4103/0976-9668.82318)
Thomas, J. A. & Badini, M. The role of innate immunity in spontaneous regression of cancer. Indian J. Cancer 48, 246–251 (2011). (PMID: 10.4103/0019-509X.82887)
Brausi, M. & Olaru, V. Management of high-risk non-muscle invasive bladder cancer. Minerva Urol. Nefrol. 64, 255–260 (2012).
Netea, M. G. et al. Trained immunity: A program of innate immune memory in health and disease. Science 352, aaf1098 (2016). (PMID: 10.1126/science.aaf1098)
Netea, M. G. Training innate immunity: the changing concept of immunological memory in innate host defence. Eur. J. Clin. Invest. 43, 881–884 (2013). (PMID: 10.1111/eci.12132)
Netea, M. G., Joosten, L. A. B. & van der Meer, J. W. M. Hypothesis: stimulation of trained immunity as adjunctive immunotherapy in cancer. J. Leukoc. Biol. 102, 1323–1332 (2017). (PMID: 10.1189/jlb.5RI0217-064RR)
Bazett, M. et al. Harnessing innate lung anti-cancer effector functions with a novel bacterial-derived immunotherapy. Oncoimmunology 7, https://doi.org/10.1080/2162402X.2017.1398875 (2017).
Feng, X. et al. Escherichia coli Peritonitis in peritoneal dialysis: the prevalence, antibiotic resistance and clinical outcomes in a South China dialysis center. Perit. Dial. Int. 34, 308–316 (2014). (PMID: 10.3747/pdi.2013.00012)
Obermajer, N. et al. Promoting the accumulation of tumor-specific T cells in tumor tissues by dendritic cell vaccines and chemokine-modulating agents. Nat. Protoc. 13, 335–357 (2018). (PMID: 10.1038/nprot.2017.130)
Thaker, A. I., Shaker, A., Rao, M. S. & Ciorba, M. A. Modeling colitis-associated cancer with azoxymethane (AOM) and dextran sulfate sodium (DSS). J. Vis. Exp. 67, https://doi.org/10.3791/4100 (2012).
Parang, B., Barrett, C. W. & Williams, C. S. AOM/DSS Model of Colitis-Associated Cancer. Methods Mol. Biol. 1422, 297–307 (2016). (PMID: 10.1007/978-1-4939-3603-8_26)
Mitroulis, I. et al. Modulation of Myelopoiesis Progenitors Is an Integral Component of Trained Immunity. Cell 172, 147–161.e12 (2018). (PMID: 10.1016/j.cell.2017.11.034)
Arts, R. J. W. et al. BCG Vaccination Protects against Experimental Viral Infection in Humans through the Induction of Cytokines Associated with Trained Immunity. Cell. Host Microbe 23, 89–100.e5 (2018). (PMID: 10.1016/j.chom.2017.12.010)
Askenase, M. H. et al. Bone-Marrow-Resident NK Cells Prime Monocytes for Regulatory Function during Infection. Immunity 42, 1130–1142 (2015). (PMID: 10.1016/j.immuni.2015.05.011)
Kurihara, T., Warr, G., Loy, J. & Bravo, R. Defects in macrophage recruitment and host defense in mice lacking the CCR2 chemokine receptor. J. Exp. Med. 186, 1757–1762 (1997). (PMID: 10.1084/jem.186.10.1757)
Shi, C. & Pamer, E. G. Monocyte recruitment during infection and inflammation. Nat. Rev. Immunol. 11, 762–774 (2011). (PMID: 10.1038/nri3070)
Bach, J. F. The effect of infections on susceptibility to autoimmune and allergic diseases. N. Engl. J. Med. 347, 911–920 (2002). (PMID: 10.1056/NEJMra020100)
von Mutius, E. Allergies, infections and the hygiene hypothesis–the epidemiological evidence. Immunobiology 212, 433–439 (2007). (PMID: 10.1016/j.imbio.2007.03.002)
Rook, G. A. & Dalgleish, A. Infection, immunoregulation, and cancer. Immunol. Rev. 240, 141–159 (2011). (PMID: 10.1111/j.1600-065X.2010.00987.x)
Scudellari, M. News Feature: Cleaning up the hygiene hypothesis. Proc. Natl. Acad. Sci. USA 114, 1433–1436 (2017). (PMID: 10.1073/pnas.1700688114)
Cholapranee, A. & Ananthakrishnan, A. N. Environmental Hygiene and Risk of Inflammatory Bowel Diseases: A Systematic Review and Meta-analysis. Inflamm. Bowel Dis. 22, 2191–2199 (2016). (PMID: 10.1097/MIB.0000000000000852)
Lambrecht, B. N. & Hammad, H. The immunology of the allergy epidemic and the hygiene hypothesis. Nat. Immunol. 18, 1076–1083 (2017). (PMID: 10.1038/ni.3829)
Olszak, T. et al. Microbial exposure during early life has persistent effects on natural killer T cell function. Science 336, 489–493 (2012). (PMID: 10.1126/science.1219328)
Kearney, S. C., Dziekiewicz, M. & Feleszko, W. Immunoregulatory and immunostimulatory responses of bacterial lysates in respiratory infections and asthma. Ann. Allergy Asthma Immunol. 114, 364–369 (2015). (PMID: 10.1016/j.anai.2015.02.008)
Zloza, A. Viruses, bacteria, and parasites - oh my! a resurgence of interest in microbial-based therapy for cancer. J. Immunother. Cancer. 6, 3–8 (2018). (PMID: 10.1186/s40425-017-0312-8)
Kurtz, J. Specific memory within innate immune systems. Trends Immunol. 26, 186–192 (2005). (PMID: 10.1016/j.it.2005.02.001)
Vivier, E. & Malissen, B. Innate and adaptive immunity: specificities and signaling hierarchies revisited. Nat. Immunol. 6, 17–21 (2005). (PMID: 10.1038/ni1153)
Kaufmann, E. et al. BCG Educates Hematopoietic Stem Cells to Generate Protective Innate Immunity against Tuberculosis. Cell 172, 176–190.e19 (2018). (PMID: 10.1016/j.cell.2017.12.031)
Kleinnijenhuis, J. et al. Bacille Calmette-Guerin induces NOD2-dependent nonspecific protection from reinfection via epigenetic reprogramming of monocytes. Proc. Natl. Acad. Sci. USA 109, 17537–17542 (2012). (PMID: 10.1073/pnas.1202870109)
Naik, S. et al. Inflammatory memory sensitizes skin epithelial stem cells to tissue damage. Nature 550, 475–480 (2017). (PMID: 10.1038/nature24271)
Ordovas-Montanes, J. et al. Allergic inflammatory memory in human respiratory epithelial progenitor cells. Nature 560, 649–654 (2018). (PMID: 10.1038/s41586-018-0449-8)
Bazett, M. et al. A novel microbe-based treatment that attenuates the inflammatory profile in a mouse model of allergic airway disease. Sci. Rep. 6, 35338 (2016). (PMID: 10.1038/srep35338)
Bazett, M. et al. Attenuating immune pathology using a microbial-based intervention in a mouse model of cigarette smoke-induced lung inflammation. Respir. Res. 18, 92-y (2017). (PMID: 10.1186/s12931-017-0577-y)
Sham, H. P. et al. Immune Stimulation Using a Gut Microbe-Based Immunotherapy Reduces Disease Pathology and Improves Barrier Function in Ulcerative Colitis. Frontiers in Immunology 9 (2018).
Qu Biologics Inc. Safety and Efficacy of QBECO in Moderate to Severe Ulcerative Colitis. (2017).
Sutcliffe, S. et al. Novel Microbial-Based Immunotherapy Approach for Crohn’s Disease. Front. Med. (Lausanne) 6, 170 (2019). (PMID: 10.3389/fmed.2019.00170)
Yu, Y. R. et al. A Protocol for the Comprehensive Flow Cytometric Analysis of Immune Cells in Normal and Inflamed Murine Non-Lymphoid Tissues. Plos One 11, e0150606 (2016). (PMID: 10.1371/journal.pone.0150606)
Iizawa, Y., Kitamoto, N., Hiroe, K. & Nakao, M. Streptococcus pneumoniae in the nasal cavity of mice causes lower respiratory tract infection after airway obstruction. J. Med. Microbiol. 44, 490–495 (1996). (PMID: 10.1099/00222615-44-6-490)
Netea, M. G. et al. Circulating lipoproteins are a crucial component of host defense against invasive Salmonella typhimurium infection. Plos One 4, e4237 (2009). (PMID: 10.1371/journal.pone.0004237)
Loomis, W. P. et al. Temporal and anatomical host resistance to chronic Salmonella infection is quantitatively dictated by Nramp1 and influenced by host genetic background. Plos One 9, e111763 (2014). (PMID: 10.1371/journal.pone.0111763)
Siebenhaar, F. et al. Control of Pseudomonas aeruginosa skin infections in mice is mast cell-dependent. Am. J. Pathol. 170, 1910–1916 (2007). (PMID: 10.2353/ajpath.2007.060770)
King, S. & Metzger, W. I. A new plating medium for the isolation of enteric pathogens. I. hektoen enteric agar. Appl. Microbiol. 16, 577–578 (1968). (PMID: 48696174869617)
معلومات مُعتمدة: P30 CA023108 United States CA NCI NIH HHS
المشرفين على المادة: 0 (Bacterial Vaccines)
0 (Cancer Vaccines)
0 (Vaccines, Inactivated)
تواريخ الأحداث: Date Created: 20200405 Date Completed: 20201207 Latest Revision: 20210403
رمز التحديث: 20231215
مُعرف محوري في PubMed: PMC7125210
DOI: 10.1038/s41598-020-62735-z
PMID: 32246043
قاعدة البيانات: MEDLINE
الوصف
تدمد:2045-2322
DOI:10.1038/s41598-020-62735-z